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Abstract

WF2Q+ is a packet scheduler providing optimal QoS
guarantees at a low computational complexity. It allows
a fraction of the total link capacity to be reserved to each
packet flow to transmit, and it guarantees to each flow the
minimum possible deviation with respect to its reserved ser-
vice over any time interval.

WF2Q+ has been defined assuming that the set of the
packet flows to transmit is fixed and known at system design
time. Unfortunately, such assumption is widely violated
in many systems, such as Web servers or Internet routers.
In this paper we propose a general scheme for extending
WF2Q+ to support also the case where the set of packet
flows to transmit is unknown beforehand and varies over
time. The scheme preserves the service guarantees provided
by WF2Q+, and allows different tradeoffs to be realized be-
tween computational complexity and system responsiveness
to changing traffic mixes.

After investigating thepros and consof the possible so-
lutions based on such general scheme, we present a simple
and efficient algorithm for enabling WF2Q+ to support a
dynamic traffic mix.

Keywords: Quality of Service, Resource Reservation,
Computational Complexity.

1. Introduction

Packet scheduling algorithms at network nodes play a
critical role in providing Quality of Service (QoS) guaran-
tees in time-sensitive network applications.

A widely deployed model for providing QoS guarantees
at a network node is the Resource Reservation one: for each
outgoing link, a fraction (share) of the link capacity is re-
served to each of the packet flows1 served by the link. Pos-
sibly each flow must pass an Admission Control test be-
fore being accepted and transmitted through the link. Given

1Classification issues are out of the scope of this paper, we just assume
that packet flows be defined is some meaningful way.

any time interval during which a flow is continuously back-
logged, we define asreserved servicefor the flow over such
time interval, the minimum number of bits of the flow that
shouldbe transmitted according to its reserved share of the
link capacity.

We said that a packet flowshould receive its reserved
service for the following reason. In a real system, a trans-
mission link can transmit only one packet at a time, and the
transmission of each packet can not be interrupted. It is then
easy to prove that the minimum deviation from the reserved
service achievable by any packet scheduler in a real system
is roughly equal to twice the maximum packet size [4].

To the literature, the only two existing work-conserving2

schedulers guaranteeing to each flow the minimum possible
deviation from its reserved service over any time interval are
Worst-case Fair Weighted Fair Queueing (WF2Q) [3], and
Worst-case Fair Weighted Fair Queueing Plus (WF2Q+) [4].
DefinedN as the number of packet flows sharing a common
outgoing link at a network node, both WF2Q and WF2Q+
haveO(log N) worst-case computational complexity per
packet transmission [13].

Furthermore, both are based on the Proportional Share
(PS) model: each flow is assigned a weight and, at any time
instantt in which it is backlogged, it shouldideally receive
a share of the link capacity equal to the ratio between its
weight and the sum of the weights of the flows backlogged
at time t. This is exactly the service provided by a per-
fectly fair ideal system, called Generalized Processor Shar-
ing (GPS) server [1]. The ideal PS service distribution pro-
vided by the GPS server is obviously unfeasible in a real
system, but it is commonly used as a reference service dis-
tribution for practical packet schedulers.

A backlogged flow receives the minimum possible share
of the link capacity if all the other flows are backlogged too.
As a consequence, the Proportional Share model provides
a natural implementation of the Resource Reservation one,
where the reserved share of a flow coincides with the ratio
between its weight and the sum of the weights of all the
flows served by the link.

WF2Q is based on the internal on-line simulation of the

2I.e. which never leave the link idle if there are pending packets.



service provided by the GPS server, and it guarantees the
minimum possible per-flow deviation with respect to the
simulated GPS server. As such, in addition to the service
guarantees also provided by WF2Q+, WF2Q guarantees the
minimum possible deviation from a perfect PS service. Said
in other words, besides guaranteeing the minimum possible
deviation from the reserved service as WF2Q+, WF2Q also
guarantees the minimum possible deviation from a perfectly
fair re-distribution of the excess bandwidth when not all the
flows are backlogged.

Such higher service accuracy is paid with the computa-
tional cost of internally simulating the GPS server. In con-
trast, WF2Q+ is based on the internal simulation of a more
approximated, but cheaper to simulate system. For this rea-
son, WF2Q+ has the same asymptoticO(log N) computa-
tional complexity of WF2Q, but with smaller constants.

Furthermore, an approximated implementation [12] of
WF2Q+ with O(1) complexity (in the number of flows) has
been devised to achieve high efficiency in high speed appli-
cations. Although not achieving the minimum possible de-
viation, such approximated implementation still guarantees
a tightO(1) per-flow deviation with respect to the reserved
service.

As a conclusion, in all the applications where perfect
fairness is not a major issue, whereas computational com-
plexity is, WF2Q+ constitutes the best option to achieve de-
terministic QoS guarantees. We will provide a wider com-
parison between WF2Q+ and other existing schedulers in
the section on related work.

1.1. The problem of the dynamic traffic mix

Both WF2Q and WF2Q+ have been defined assuming
that the whole setREF of theN flows served by a link is
fixed and known at system design time. But consider a pop-
ular Web-site or a core Internet router. In both systems, the
set of competing flows can vary dramatically over a week,
or even during each day.

Hence, which is exactly the static setREF of compet-
ing flows to consider? How can we assess its composition
at system design time? Finally, is the same set compliant
with the actual traffic mix at any time instant of the system
lifetime?

The problem is that a static set of packet flows is not well
suited for describing the dynamic nature of the packet traffic
in a Web-site or in a network router.

This is not an issue in case of WF2Q. According to what
previously said, all that matters for simulating the service
provided by a GPS server is knowing the set of the flows
backlogged in the server at any time instant. For this rea-
son, the setREF constitutes only a descriptive artifact in
WF2Q, and it can be trivially assumed to include all the pos-
sible flows that will be served during the system lifetime.

On the contrary, WF2Q+ does need to knowREF to
compute its schedule. More precisely, as we will show, it
needs to know the sum of the weights of all the flows in
REF . In the end, differently from WF2Q, WF2Q+ must be
properly extended to support also a dynamic traffic mix.

1.2. Contributions of this paper

In this paper we propose ageneral schemefor extend-
ing WF2Q+ to support a dynamically changing traffic mix,
still preserving all the service guarantees provided by the
original scheduling algorithm. The main idea behind such
scheme is: 1) defining, by mimicing the tracking of the set
of the backlogged flows performed by WF2Q, a dynamic
setREF (t), which provides at any time instant an approx-
imationby excessof the set of the backlogged flows, and 2)
substitutingREF with REF (t) in all the formulas used by
WF2Q+ to compute its schedule.

The scheme allows different tradeoffs to be realized
between computational complexity and responsiveness to
changing traffic mixes. We investigate the possible solu-
tions by comparing their performance against the one of
WF2Q (the analysis is only qualitative in nature; a simu-
lation testbed for carrying out a quantitative analysis is un-
der preparation, as explained in the last section) . Finally,
basing upon the outcomes of such analysis, we define Tick-
driven Removal (TdR), a simple and efficient algorithm for
enabling WF2Q+ to support a dynamic traffic mix.

As we will show, both TdR and all the other possible so-
lutions analyzed in this paper are compliant withanyhigher
level resource reservation or admission control policy.

1.3. Organization of the paper

This paper is organized as follows. In the next section we
make a brief survey of related work. In Section 3, we pro-
vide an overview of WF2Q+. Then in Section 4 we present
our general scheme for extending WF2Q+, plus an analysis
of the possible solutions based on such scheme. In the same
section we present the algorithm TdR and its properties.

2. Related work

To the best of our knowledge, the issues related to sup-
porting a dynamic traffic mix with WF2Q+ has never been
targeted.

In contrast, apart from WF2Q, other scheduling algo-
rithms withO(log N ) complexity and able to support a dy-
namic traffic mix have been devised, such as Self Clocked
Fair Queueing [6], and Start Time Fair Queueing [7]. Un-
fortunately, all them exhibitO(N) per-flow deviation with
respect to the reserved service, whereN can be in the order



of the thousands in many applications, such as popular Web
sites.

Finally, several schedulers withO(1) complexity have
been proposed to achieve high efficiency in high speed ap-
plications [8, 10], but all them exhibitO(N) or, worse yet,
unbounded per-flow deviation with respect to the reserved
service.

3. WF2Q+

Consider a system consisting of a network node in which
N flows share a common outgoing link with time varying
capacityR(t). We will call such system thereal system
when we will need to distinguish it from the ideal system
defined in Subsection 3.2. We define asREF the set of the
N flows. We say that a packethas arrivedin the system
when its last bit has arrived in the system, we call packet
arrival time the time at which this happens. Similarly, we
say that a packetdepartsfrom the system when its last bit
is transmitted by the system, and we call packetfinish time
the time at which it happens.

Each flow has a packet FIFO queue associated with it,
holding the flow own backlog. We say that a flow isback-
loggedif it owns packets not yet (completely) transmitted,
otherwise we say that the flow isidle. We defineB(t) as
the set of the flows backlogged at timet. Finally, we define
backlogged/idle period for thei − th flow a time interval
during which the flow is continuously backlogged/idle.

We defineW (t) ≡
∫ t

o
R(τ) · dτ as thetotal amount of

service– bits transmitted – provided by the system during
[0, t]. Given a generic functionf(t) of the time, we will use
the notationsf(t−) andf(t+) to refer to the value assumed
by the function immediately before timet, and immediately
after timet. Furthermore, given two time instantst1 and
t2 such thatt1 ≤ t2, we definef(t1, t2) ≡ f(t2) − f(t1).
Finally, we definedf(t) ≡ f(t, t + dt), wheredt is the
length of an arbitrarily short time interval.

Before introducing WF2Q+, we give in the next subsec-
tion a formal definition both of the PS paradigm, which
WF2Q+ adheres to, and of an index that measures the per-
flow deviation of a scheduler with respect to the reserved
service. In the successive subsection we will describe the
ideal system internally simulated by WF2Q+. We will fi-
nally show WF2Q+ and its service properties in the last sub-
section.

3.1. PS paradigm and Worst-case Fair Index

Each flow i has a positive numberφi assigned to it,
namely itsweight. Defined

ΦTOT ≡
∑

j∈REF

φj (1)

as the sum of the weights of all theN flows in REF , we
define φi

ΦT OT
as thereserved shareof thei − th flow.

In some papers, as e.g. [3, 4],ΦTOT is assumed to be
no higher than1. Without entering into details, this as-
sumption would simplify the formulas used in the defini-
tion of the time guarantees as well as of the algorithm itself.
In all these formulas,ΦTOT could be replaced by1. Un-
fortunately, assumingΦTOT ≤ 1 has two negative conse-
quences.

First, the weight of a flow happens to coincide with the
reserved share of the flow ifΦTOT = 1, or is a lower bound
of the reserved share ifΦTOT < 1. Hence, the weights as-
sume anabsolutemeaning. On the contrary, we say that the
weights have arelativemeaning if the theonly implication
of assigning weightsφi andφj to flows i andj is that the
ratio between the reserved shares of the two flows isφi

φj
.

Assuming a relative meaning for the weights is very prac-
tical in many applications where achieving fairness is the
only goal. Usually in these applications one does not want
to care about absolute values, or about numerical problems
related to meeting theΦTOT ≤ 1 constraint.

Second, systems with a high variability of the number of
backlogged flows, as e.g. Web or Video-on-Demand servers
may undergo a coarse bandwidth distribution. In these sys-
tems, the sum of the weights of the backlogged flows may
be much lower than1 during some time periods. During
these periods each backlogged flow would be guaranteed
a reserved share much lower than the share that it should
enjoy according to the PS paradigm. Said in other words,
the excess bandwidth would not be guaranteed to be redis-
tributed in proportion to flow weights, as one would expect
in an accurate PS system.

Both problems can be solved by removing the constraint
ΦTOT ≤ 1 and adopting the scheme proposed in this paper.
As shown in Section 4, weights can be used with a relative
meaning, and a fine PS bandwidth distribution can enforced
against any traffic mix. Hence, in the rest of this paper, we
assume no constraint onΦTOT .

According to what is said in the introduction, over any
time interval[t1, t2] during which it is continuously back-
logged, thei − th flow is expected to receive the following
reserved serviceWi, res(t1, t2) (measured in number of bits
transmitted)

Wi, res(t1, t2) ≡
φi

ΦTOT

· W (t1, t2) (2)

whereW (t1, t2) is the total amount of service provided by
the system during[t1, t2].

The following index, called Worst-case Fair Index (WFI)
[3], can be used to measure the per-flow discrepancy be-
tween the service provided by a scheduling algorithm and
the reserved service:

Worst-case fair Index (WFI). A scheduling algorithm



A is characterized by a Worst-case Fair IndexWFIA
i for

the i − th flow, if, given any time interval[t1, t2] during
which thei − th flow is continuously backlogged,

WA
i (t1, t2) ≥

φi

ΦTOT

· W (t1, t2) − WFIA
i

whereWA
i (t1, t2) is the amount of service provided by the

scheduling algorithmA to thei − th flow during[t1, t2].

As we will show, WF2Q+ has the smallest WFI among
all packet schedulers. Such result is achieved by internally
simulating the service provided by a special ideal system,
and continuously serving packets so as to stay as close as
possible to the service provided by the ideal system. We
provide an overview of such ideal system in the next sub-
section.

3.2. Shaped-Rate Proportional Server (S-RPS)

The main reason why WF2Q+ has the smallest WFI
among all packet schedulers is because it closely approx-
imates the service provided by an ideal system, that we will
call Shaped-Rate Proportional Server (S-RPS), and that has
the following WFI

WFIS−RPS
i = (1 −

φi

ΦTOT

) · Li, max ∀i (3)

whereLi, max is the maximum length of the packets of the
i − th flow. We will progressively introduce all the ele-
ments needed to show how a S-RPS works, and, as soon as
possible, we will show all the concepts through a graphi-
cal example. We will provide neither all the details nor any
proof. The interested reader is referred to [5].

The S-RPS is a work-conserving ideal fluid system, i.e.
a system that: 1) is never idle if there are backlogged flows,
2) can serve more than one flow at the same time, and can
provide each flow with a differentservice rate. We define
as capacityR(t) of a S-RPS, the total amount of service
provided by the system at timet.

In a S-RPS each flowi is associated with aflow potential
Pi(t), which measures – in thespecialway shown below –
thenormalized(i.e. divided by its weight) amount of service
received by the flow (Pi(0) = 0 ∀i):

Pi(t + dt) ≡

{

Pi(t) +
dW

S−RPS
i

(t)

φi
if i ∈ B(t)

max [Pi(t), P (t)] otherwise
(4)

whereP (t) is a special function called(S-RPS) system po-
tential. We will soon show the form of such function and
the reason for the artificialpushing upof the idle flow po-
tentials.

The S-RPS serves the backlogged flows so as to tend to
equalizetheir potentials. In formulas, definedC(t) ⊆ B(t)

as the subset of the backlogged flows whose potential is
minimum among all the backlogged flows, i.e.

C(t) ≡ {i ∈ B(t) |Pi(t) = min
j∈B(t)

Pj(t)} (5)

a S-RPS provides the following service to each flow:

dWS−RPS
i (t) =

{

φi
∑

j∈C(t)
φj

· dW (t) if i ∈ C(t)

0 otherwise
(6)

wheredW (t) = R(t) · dt is the total amount of service
provided by the system during[t, t + dt].

To show a graphical example, suppose for the moment
that the system potential is just a linear function ofW (t),
growing at the minimum possible slope with which flow po-
tentials can grow, i.e.

P (t) =
1

ΦTOT

· W (t) (7)

(we will see the complete function after the example). Fig-
ure 1 shows a possible evolution of the flow potentials and
of the system potential in a S-RPS with constant capacity
R(t) = R. The S-RPS serves two flows, both with weight
1. Each arriving packet is depicted in Figure 1.A as a rect-
angle: the projection on thex axis of the left corner of the
rectangle represents the packet arrival time, while the length
of the base represents the time needed to transmit the packet
at full system speed.

According to (6), the first flow is served at maximum
speed during[a1, a2), as shown in Figure 1.C (the areas
represent the amount of service received by the flows).
Hence, according to (4) and (7),P1(t) grows faster than
the system potential. The potential of the second flow is
pushed up through the system potential during its idle pe-
riod [a1, a2], i.e. P2(t) = P (t) ∀t ∈ [a1, a2]. Hence
P2(a2) = P (a2) when the first packet of the second flow
arrives. SinceP2(a2) < P1(a2), then, according to (6), the
service of the first flow is suspended until both potentials
become equal at timeb. After timeb, both flows receive the
same service rate, until the packet of the first flow is com-
pletely transmitted at timeF1. The first packet of the second
flow is instead completed at timeF2.

The figure also shows the consequences of the artificial
pushing up of the idle flow potentials. During[a1, a2),
P2(t) grows as if the second flow was backlogged and was
receiving the minimum service guaranteed by (6). IfP2(t)
was not pushed up during[a1, a2), then, during the succes-
sive backlogged period and according to the equalizing pol-
icy (6), the second flow would have recovered the service
lost while it was idle, which is not provided by the PS guar-
antee (2). Finally, it is easy to show that such service recov-
ery may cause the PS guarantee (2) to be violated for some
flows. On the contrary, pushing up the potential of each idle
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Figure 1. Evolution of the potentials in a S-
RPS.

flow (if it becomes lower to the system potential) guarantees
that the flow be treated as if it had received afictitiousextra
amount of service, such that the flow never happens to have
received less service than the minimum guaranteed in case
it was continuously backlogged.

As a conclusion, if the flow potentials are guaranteed to
beneverlower than the system potential also while they are
backlogged, and if the system potential never grows slower
than any backlogged flow potential, we can give the fol-
lowing physical meaning to the system potential:P (t) rep-
resents the minimum normalized amount of service guaran-
teed to each flow during[0, t], given by the sum of two com-
ponents: the sum of the minimum amount of normalized
serviceactually guaranteed to the flow during each of its
backlogged periods, plus the sum of the minimum amount
of normalized service that would have been guaranteed to
the flow if it had beenbacklogged during each of its idle
periods.

The properties of the S-RPS have been proven assum-
ing that the above physical meaning of the system potential
holds [5]. Hence, it is crucial to note that, if such physi-
cal meaning is violated, the proofs of the service guarantees
provided by the S-RPS, and hence, by WF2Q+, are broken
too.

There is a complementary problem. Consider again Fig-
ure 1. Since the first flow accumulated more than the guar-
anteed service during[a1, a2), then, during[a2, b), it pays
back for theextra servicepreviously received. Basing upon
this observation, it is easy to prove that, if a flow could re-
ceive an unbounded amount of extra service during some
time interval, then it might suffer for a complete service de-
nial proportional to the amount of extra service previously

received.
For this reason, the service provided by the S-RPS is

shapedthrough the following rule: the S-RPS is allowed
to start serving a packet only if such packet iseligible, i.e. if
the potential of the corresponding flow is no higher than the
system potential.

For example, in Figure 1 the first packet of each of the
two flows is eligible as it arrives, whereas the second packet
of the second flow is not eligible when it arrives at timea3.
This fact causes a problem: sinceno packet is eligible at
timea3, the system risks to be non work-conserving.

The problem is solved by using a slightly more com-
plex system potential function than (7). To define the com-
plete function, we need to introduce the following quanti-
ties. Given thek − th packetpk

i of the i − th flow, we
definestart potentialSk

i andfinish potentialF k
i of pk

i , as
the value assumed by the S-RPS system potential whenpk

i

starts to be served and whenpk
i is completed, respectively.

It has been proven in [4] that

Sk
i = max(P (ak

i ), F k−1
i )

F k
i = Sk

i +
Lk

i

φi

(8)

whereak
i andLk

i are, respectively, the arrival time and the
length of the packetpk

i . The complete formula for the sys-
tem potential is

P (t + τ) = max{P (t) +
W (t, t + τ)

ΦT OT

, min
i∈B(t+τ)

{S
h(t)
i

}} (9)

whereS
h(t)
i is the start potential of the packetp

h(t)
i at the

head of the queue of thei − th flow at time t. Consider
again Figure 1. According to (9), at timea+

3 the system
potentialjumpsto P2(a3), thus guaranteeing the system to
remain work-conserving.

We can finally enunciate the fundamental property that
we will preserve when extending WF2Q+ in the next sec-
tion:

Property 1 Suppose that, whenever the value of the system
potential (9) is equal to the lowest flow potential in
the system, the system potential grows no faster than
how the potentials of the flows currently under service
grow. Then the physical meaning of the system poten-
tial (9) is preserved and (3) holds.

3.3. Definition and properties of WF2Q+

WF2Q+ is based on the internal simulation of acorre-
spondingS-RPS, i.e. of a S-RPS with the same capacity of
the real system at any time instant, and receiving the same
packet arrival pattern as the real system.

The following three properties are exploited in the defi-
nition of WF2Q+: 1) given any packetpk

i , its start and fin-
ish potentialsSk

i andF k
i in the corresponding S-RPS can



be efficiently computed using (8), 2) a packetpk
i is eligi-

ble at timet if and only if Sk
i ≤ P (t), and 3) it is easy to

prove that, at any time instant, the eligible packet with the
smallest finish potential is the next packet to finish in the
corresponding S-RPS if no other packet is to arrive [4]. The
definition of WF2Q+ follows.

Worst-case Fair Weighted Fair Queueing Plus
(WF2Q+). Whenever the link is available to transmit a new
packet, transmit the eligible packet with the minimum finish
potential. Ties are broken arbitrarily.

As a consequence, simulating the corresponding S-RPS
means just computing its system potential according to (9)
and using it to:1) compute packet start and finish potentials
through (8), and 2) filter eligible packets3.

It has been proven in [5] that approximating as closely
as possible the packet finish order of the corresponding S-
RPS preserves a bounded per-flow lag, equal toLmax, with
respect to the service provided by the corresponding S-RPS.
Besides, for the same reasons shown for the S-RPS itself,
the eligibility constraint bounds to(1− φi

ΦT OT
) ·Li, max the

maximum amount of extra service provided to each flow
by WF2Q+ with respect to the minimum guaranteed by the
corresponding S-RPS according to the system potential (9).
It has been proven in [3] that, thanks to such bounds, and if
(3) holds, then

WFI
WF 2Q+
i = (1 −

φi

ΦTOT

) · Li, max + Lmax (10)

which is the minimum possible WFI achievable in a real
system [4].

4. Supporting a dynamic traffic mix

In this section we will always refer to a pair of system
made of a real system in which WF2Q+ is used to schedule
packets, and the corresponding S-RPS.

As shown in the introduction, the static setREF is not
well suited for describing the dynamic nature of the traffic
mix in a network router or in a Web server. We also showed
that this fact is not a problem in case of WF2Q, whereREF

constitutes only a descriptive artifact.
On the contrary,REF has an operative meaning in

WF2Q+, because it determines the value ofΦTOT as com-
puted in (1), and, according to (9),ΦTOT must be known to
track the S-RPS system potential.

To solve the problem, we propose tomimic the back-
logged flows tracking performed by WF2Q. First, assume,
as done for WF2Q, thatREF is the set of all the possible

3For the sake of precision, the setB(t) actually used in (9) is not the
set of the flows backlogged in the corresponding S-RPS, but the set of the
flows backlogged in the real system. However, it has been shown in [5]
that this fact does not affect the hypothesis in Property 1, and that both
systems are still guaranteed to be work-conserving.

flows that will be served during the system lifetime. Then
use a dynamic setREF (t) ⊆ REF instead ofREF when
computing the sum of the weights of the flows served by the
system. I.e. use the dynamic quantity

ΦTOT (t) ≡
∑

j∈REF (t)

φj

instead ofΦTOT ≡
∑

j∈REF φj in (9). Finally, update
REF (t) according to the following general scheme:

General scheme for updating REF(t).
1. At system start upREF (t) = ∅.

(a) If a flow not belonging toREF (t) becomes
backlogged at timet, it is inserted inREF (t).

(a) A flow can be removed fromREF (t) only if it is
idle in the corresponding S-RPS. The removal of
a flow fromREF (t) may be delayed for a max-
imum time interval∆T from the time instant in
which the flow becomes idle in the corresponding
S-RPS. If a flow idle in the corresponding S-RPS
becomes backlogged in the corresponding S-RPS
before being removed fromREF (t), its removal
is canceled.

According to the above scheme, the setREF (t) is a sort
of approximationby excessof the set of the flows back-
logged in the corresponding S-RPS: flows are allowed to be
removedlazily from REF (t).

Before showing possible algorithms compliant with such
a scheme, we want to prove that the scheme is well
suited for preserving the service guarantees provided by
WF2Q+. According to Definition 4, a new flow can be
added toREF (t) as soon as it becomes backlogged. Hence
ΦTOT (t) can be immediately increased, and ultimately the
minimum slope ofP (t) can immediately decrease in (9).
This does not cause any problem to the simulated S-RPS
in meeting Property 1. On the contrary, according to (6), a
lower system potential slope makes the hypothesis of Prop-
erty 1 easier to be guaranteed.

With regard to removals, it is dangerous to remove a flow
from REF (t) if the flow is still backlogged in the corre-
sponding S-RPS. Suppose to remove a flow fromREF (t),
and hence to decreaseΦ(t) as soon as the flow becomes idle
in the real system. Consider then Figure 2, where two flows
with unit weight present one packet each at time0. Fig-
ures 2.B and 2.C show, respectively, the service provided
by WF2Q+ and the evolution of the potentials.

Both flows are inserted inREF (t) at time 0, hence
ΦTOT (0+) = 2. According to (6), (4), and (9), both the
system potential and the potentials of the two flows grow at
the same rate.

At time f1 the first flow becomes idle in the real sys-
tem. It is then immediately removed fromREF (t), hence
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Figure 2. Consequences of the early removal
of a flow from REF (t).

ΦTOT (f+
1 ) = 1, and the system potential starts growing

at twice its previous slope. But both flows are still receiv-
ing service in the corresponding S-RPS, hence the slope of
their potentials remains unchanged at timef+

1 . As a con-
clusion, during[f1, f2] the system potential grows at twice
the slope of the flow potentials. Hence itviolatesthe hy-
pothesis of Property 1, through which the guarantee (3) has
been proven.

On the contrary, if a flow is removed fromREF (t) only
after becoming idle in the corresponding system, then it can
never happen thatΦTOT (t) ≤

∑

j∈C(t) φj . Hence, accord-

ing to (9) and (6),PS−RPS(t) will never violate the hy-
pothesis of Property 1, hence the service guarantees (3) and
(10) continue to hold.

As a conclusion, the scheme 4 allows no service guar-
antees to be broken. But, how can a flow be asserted to be
idle? As previously said, WF2Q+ carries out the simulation
of the corresponding S-RPS by just tracking the evolution
of its system potential. Hence, the system potential consti-
tutes the only available source of information on the service
provided by the corresponding S-RPS.

Unfortunately, the system potential does not contain in-
formation on the actual service provided to the flows, but
only on the minimum service guaranteed. As a conse-
quence, defined asunbacking potentialof the i − th flow
the finish potential of the last packet of thei − th flow ar-
rived up to timet, the system potential provides only the
following sufficient, but not necessary, condition for a flow
to be idle in the corresponding S-RPS: if the system poten-
tial is no lower than the unbacking potential of thei − th

flow at timet, then, at timet, thei− th flow is certainly idle
in the corresponding S-RPS. We say that thei − th flow is
disposableat timet if its unbacking potential is no higher
than the system potential at timet. For example, the first
flow becomes disposable at timec in Figure 1, although it
was already idle at timeF1.

The minimum worst-case delay∆T in updating
REF (t) – as defined in Definition 4 – achievable by any al-
gorithm that removes only disposable flows fromREF (t),
is equal to the maximum time interval∆Tdisp ranging from
the time instant in which a flow becomes idle in the cor-
responding S-RPS to the time instant in which it becomes
disposable. More generally, basing upon the disposable at-
tribute and using a more or lesslazy removal strategy, the
desired tradeoff between computational efficiency and sys-
tem responsivenessto changing traffic mixes can be real-
ized.

Several tradeoffs will be discussed the next subsection.
Finally, exploiting the considerations made in such subsec-
tion, a simple and efficient algorithm for updatingREF (t)
will be defined in the last subsection.

4.1. Possible solutions

As shown in [13], in a time interval during which
ΦTOT (t) is much larger than the sumΦback(t) of the
weights of the backlogged flows, WF2Q+ may provide an
unfair/bursty service. Hence, achieving a low value for∆T

in Definition 4 can greatly improve the short term fairness
and the service smoothness of WF2Q+.

The quickest strategy for updatingREF (t) by the means
of the disposable attribute is removing all the disposable
flows from REF (t) upon each system potential update.
Hereafter we will shortly refer to such updating strategy as
the quickest strategy.

To evaluate the effectiveness of the quickest strategy and
of other less aggressive strategies for updatingREF (t), we
must consider that WF2Q can be used to provide a per-
fectly fair/smooth service over any time interval [13]. On
the contrary, as previously shown, even the quickest strat-
egy can not guarantee a worst-case delay lower than∆Tdisp

in updatingREF (t). As a consequence it can not prevent
ΦTOT (t) from being much larger thanΦback(t) – and hence
WF2Q+ from providing an unfair/bursty service – during
some time intervals with length∆Tdisp.

Hence, using WF2Q+ instead of WF2Q may still be ad-
vantageous if the former can be implemented at a lower
complexity than WF2Q. In contrast, aggressive strategies
for updatingREF (t) can lead to high computational com-
plexity. Especially, the quickest strategy involvesO(N)
worst-case flow removals per system potential update, be-
cause, as shown for the GPS server in [13], packet finish
times can be arbitrarily slightly skewed in a fluid system.



ΦTOT (t) could be however updated atO(log N) worst-
case cost per packet service. Consider Logarithmic-WF2Q
(L-WF2Q), theO(log N) implementation of WF2Q shown
in [13]. To simulate the service provided by the GPS server,
L-WF2Q maintains a special tree withO(log N) depth. It is
easy to show that, using a similar data structure, it is possi-
ble to compute atO(log N) cost the new value ofΦTOT (t)
after removingO(N) disposable flows fromREF (t).

But, even exploiting such data structure, the quickest
strategy would however cause WF2Q+ to have an additional
running time per packet service no lower than the one in-
curred by L-WF2Q to simulate the GPS server. Then we
must consider strategies more tilted toward a lower compu-
tational complexity.

The additional computational complexity of L-WF2Q
with respect to WF2Q+ is due to the fact that, each time a
new packet arrives and each time the next packet to transmit
must be chosen, L-WF2Q must read/update at most three
fields for each node along a path from the root to a leaf of the
above mentionedO(log N) depth tree. Then we can deduce
that an extended version of WF2Q+ supporting a dynamic
traffic mix can be implemented at a significantly lower cost
than WF2Q only if the algorithm for updatingREF (t) re-
moves fromREF (t) no more than 2-3 disposable flows per
packet service/arrival. A low complexity algorithm that en-
joys such property is presented in the next subsection.

Before leaving this subsection, it is worth noting that all
the above outlined solutions – as well as the algorithm pre-
sented in the next subsection – allowREF (t) to be up-
dated automatically and independently of the possible ser-
vice policies implemented on top of the scheduler. As such,
they are compliant withanyhigher level resource reserva-
tion or admission control policy.

4.2. An efficient solution

Basing upon the considerations made in the previous
subsection, and assuming that the system is equipped with
a system clock able to raise a periodictick interrupt, we can
define the following simple and efficient algorithm for up-
datingREF (t):

Algorithm Tick-driven Removal (TdR). As soon as a
flow becomes idle in the real system, insert it in a special
idle queue– ordered by flow unbacking potentials. At each
tick of the system clock, check if the flow at the head of
the idle queue is disposable and, if so, remove it both from
REF (t) and from the idle queue. If a flow in the idle queue
becomes backlogged in the real system again, remove it
from the idle queue.

At each clock tick it is possible to check atO(1) cost
whether or not the flow at the head of the idle queue is dis-
posable, by just comparing its unbacking potential with the
current value of the system potential. Moreover, insertions
and extractions from an ordered queue can be implemented

atO(log N) cost with small constants [11]. Hence the TdR
algorithm hasO(log N) complexity per clock tick.

Furthermore, ifTtick is the the tick inter-arrival time,
then, according to definition 4, it is easy to prove that a
flow idle in the corresponding S-RPS is guaranteed to be
removed fromREF (t) within a time interval

∆T = max [∆Tdisp, ∆Tidle] + N · Ttick

where∆Tidle is the maximum time interval from the time
instant in which a flow becomes disposable to the time in-
stant in which it becomes idle in the real system.

5. Conclusions and future work

We proposed ageneral schemefor extending WF2Q+ to
support also a dynamically changing traffic mix, still pre-
serving all the service guarantees provided by the original
scheduling algorithm. We investigated the different trade-
offs allowed by the scheme between computational com-
plexity and responsiveness to changing traffic mixes, and
we compared the performance of the possible solutions
against the one of WF2Q. Finally, basing upon the outcomes
of such analysis, we defined Tick-driven Removal (TdR), a
simple and efficient algorithm for enabling WF2Q+ to sup-
port a dynamic traffic mix.

We also showed that both TdR and all the other discussed
solutions are compliant withanyhigher level resource reser-
vation or admission control policy. To assess the actual
effectiveness of our proposal, we still need to provide a
quantitative comparison among the different algorithms –
L-WF2Q, WF2Q+ with TdR and with the quickest strategy
extension – in terms of computational overhead and fair-
ness guarantees. To this aim, we are currently implement-
ing them in a general purpose operating system (FreeBSD)
as well as in thens-2simulator.
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