
202 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Resource-Sharing Servers for Open Environments
Marko Bertogna, Nathan Fisher, and Sanjoy Baruah

Abstract—We study the problem of executing a collection of in-
dependently designed and validated task systems upon a common
platform composed of a preemptive processor and additional
shared resources. We present an abstract formulation of the
problem and identify the major issues that must be addressed in
order to solve this problem. We present and prove the correctness
of algorithms that address these issues, and thereby obtain a
design for an open real-time environment.

Index Terms—Critical sections, earliest deadline first, hier-
archical systems, open environments, resource-sharing systems,
stack resource policy.

I. INTRODUCTION

T HE design and implementation of open real-time envi-
ronments [20] is currently one of the more active research

areas in the discipline of real-time computing. Such open envi-
ronments aim to offer support for real-time multiprogramming:
they permit multiple independently developed and validated
real-time applications to execute concurrently upon a shared
platform. That is, if an application is validated to meet its timing
constraints when executing in isolation, then an open environ-
ment that accepts (or admits, through a process of admission
control) this application guarantees that it will continue to
meet its timing constraints upon the shared platform. The open
environment has a runtime scheduler which arbitrates access to
the platform among the various applications; each application
has its own local scheduler for deciding which of its competing
jobs executes each time the application is selected for execution
by the “higher level” scheduler. (In recognition of this two-level
scheduling hierarchy, such open environments are also often
referred to as “hierarchical” real-time environments.)

In order to provide support for such real-time multiprogram-
ming, open environments have typically found it necessary to
place restrictions upon the structures of the individual applica-
tions. The first generation of such open platforms (see, e.g., [11],
[17], [21], [22], [35], and [41]—this list is by no means exhaus-
tive) assumed either that each application is composed of a finite
collection of independent preemptive periodic (Liu and Lay-
land) tasks [31], or that each application’s schedule is statically

Manuscript received December 18, 2008; revised May 31, 2009. First pub-
lished July 21, 2009; current version published August 07, 2009. This work was
supported in part by the NSF under Grant CNS-0834270, Grant CNS-0834132,
Grant CNS-0615197, and ARO Grant W911NF-06-1-0425 and in part by the
Wayne State University Faculty Research Award. Paper no. TII-08-12-0226.R1.

M. Bertogna is with Scuola Superiore Sant’Anna, Pisa 56124, Italy (e-mail:
marko@sssup.it).

N. Fisher is with the Department of Computer Science, Wayne State Univer-
sity, Detroit, MI 48202 USA (e-mail: fishern@cs.wayne.edu).

S. Baruah is with the Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599-3175 USA (e-mail: baruah@cs.
unc.edu).

Digital Object Identifier 10.1109/TII.2009.2026051

precomputed and runtime scheduling is done via table lookup.
Furthermore, these open environments focused primarily upon
the scheduling of a single (fully preemptive) processor, ignoring
the fact that runtime platforms typically include additional re-
sources that may not be fully preemptable. The few [16], [19],
[24], [38] that do allow for such additional shared resources typ-
ically make further simplifying assumptions on the task model,
e.g., by assuming that the computational demands of each appli-
cation may be aggregated and represented as a single periodic
task, excluding the possibility to address hierarchical systems.

More recently, researchers have begun working upon open
environments that are capable of operating upon more com-
plex platforms. There are recent publications proposing designs
for open environments that allow for sharing other resources
in addition to the preemptive processor [9], [10], [18], [40].
These designs assume that each individual application may be
characterized as a collection of sporadic tasks [8], [32], dis-
tinguishing between shared resources that are local to an ap-
plication (i.e., only shared within the application) and global
(i.e., may be shared among different applications). However,
these approaches either propose that global resources be exe-
cuted with local preemptions disabled [18], potentially causing
intolerable blocking inside an application; or allow applications
to overrun their budget, while holding a lock [9], [10], [18], [40],
increasing in this way the blocking among applications.

In this paper, we describe our design of an open environ-
ment upon a computing platform composed of a single pre-
emptive processor and additional shared resources. We assume
that each application can be modeled as a collection of preemp-
tive jobs which may access shared resources within critical sec-
tions. (Such jobs may be generated by, for example, periodic
and sporadic tasks.) We require that each such application be
scheduled using some local scheduling algorithm, with resource
contention arbitrated using some strategy such as the Stack Re-
source Policy (SRP) [3]. We describe what kinds of analysis such
applications must be subject to and what properties these appli-
cations must satisfy, in order for us to be able to guarantee that
they will meet their deadlines in the open environment.

The remainder of this paper is organized as follows. The
rationale and design of our open environment is described
in Sections II and III. In Section II, we provide a high-level
overview of our design, and detail the manner in which we
expect individual applications to be characterized—this char-
acterization represents the interface specification between
the open environment and individual applications running
on it—and in Section III, we present the scheduling and ad-
mission-control algorithms used by our open environment.
In Section IV, we discuss what kind of applications may be
scheduled by our open environment. Section V analyzes the
local feasibility problem of an admitted application. Section VI
provides further details on one important interface parameter

U.S. Government work not protected by U.S. copyright.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 203

related to the locking of shared resources. In Section VII, we
discuss possible design choices that can improve the local and
global schedulability of applications scheduled in our open
environment. In Section VIII, we relate our open environment
framework to other previously proposed works. Finally, in
Section IX, we present our conclusions.

II. SYSTEM MODEL

In an open environment, there is a shared processing plat-
form upon which several independent applications
execute. We also assume that the shared processing platform
is composed of a single preemptive processor (without loss of
generality, we will assume that this processor has unit com-
puting capacity), and additional (global) shared resources
which may be shared among the different applications. Each ap-
plication may have additional “local” shared logical resources
that are shared between different jobs within the application it-
self-the presence of these local shared resources is not relevant
to the design and analysis of the open environment. We will dis-
tinguish between:

• a unique system-level scheduler (or global scheduler),
which is responsible for scheduling all admitted applica-
tions on the shared processor;

• one or more application-level schedulers (or local
schedulers), that decide how to schedule the jobs of
an application.

An interface must be specified between each application and
the open environment. The goal of this interface specification is
to abstract out and encapsulate the salient features of the appli-
cation’s resource requirements. The open environment uses this
information during admission control, to determine whether the
application can be supported concurrently with other already ad-
mitted applications; for admitted applications, this information
is also used by the open environment during runtime to make
scheduling decisions. If an application is admitted, the interface
represents its “contract” with the open environment, which may
use this information to enforce (“police”) the application’s run-
time behavior. As long as the application behaves as specified
by its interface, it is guaranteed to meet its timing constraints;
if it violates its interface, it may be penalized while other ap-
plications are isolated from the effects of this misbehavior. We
require that the interface for each application be character-
ized by three parameters.

• A virtual processor (VP) speed .
• A jitter tolerance .
• For each global shared resource , a resource holding

time .
The intended interpretation of these interface parameters is as
follows: all jobs of the application will meet their deadlines if
executing upon a processor of computing capacity , with a
service delay of at most time-units, and will lock resource
for no more than time-units at a time during such execution.

We now provide a brief overview of the application interface
parameters. Section VI provides a more in depth discussion of
the resource holding time parameter.

1) VP Speed : Since each application is assumed val-
idated (i.e., analyzed for schedulability) upon a slower VP, this

parameter is essentially the computing capacity of the slower
processor upon which the application was validated.

2) Jitter Tolerance : Given a processor with computing
capacity upon which an application is validated, this
is the maximum service delay that can withstand without
missing any of its deadlines. In other words, is the max-
imum release delay that all jobs can experience without missing
any deadline.

At first glance, this characterization may seem like a severe
restriction, in the sense that one will be required to “waste” a sig-
nificant fraction of the VP’s computing capacity in order to meet
this requirement. However, this is not necessarily correct. Con-
sider the following simple (contrived) example. Let us represent
a sporadic task [8], [32] by a three-tuple: (WCET, relative dead-
line, period). Consider the example application composed of the
two sporadic tasks to be validated upon a
dedicated processor of computing capacity one-half. The task
set fully utilizes the VP. However, we could schedule this ap-
plication such that no deadline is missed even when all jobs are
released with a delay of two time units. That is, this application
can be characterized by the pair of parameters and

.
Observe that there is a correlation between the VP speed pa-

rameter and the timeliness constraint —increasing
(executing an application on a faster VP) may cause an increase
in the value of . Equivalently, a lower may result in a
tighter jitter tolerance, with some job finishing close to its dead-
line. However, this relationship between and is not linear
nor straightforward—by careful analysis of specific systems, a
significant increase in may sometimes be obtained for a rel-
atively small increase in .

Note that the validation process to derive the interface pa-
rameters for an application does not require to effectively
execute the application on a real processor of smaller speed.
Such parameters might be derived from the worst-case exe-
cution times of the composing jobs on the (unit-speed) target
platform, adopting proper schedulability tests associated to
the local scheduling algorithm in use. More details on the
validation process will be provided in Section IV.

Our characterization of an application’s processor demands
by the parameters and is identical to the bounded-delay
resource partition characterization of Feng and Mok [21], [22],
[35] with the exception of the parameter.

3) Resource Holding Times : For open environments
which choose to execute all global resources disabling local
preemptions (such as the design proposed in [18]),
is simply the worst-case execution time upon the VP of the
longest critical section holding global resource . We have
recently [12], [13], [23] derived algorithms for computing
resource holding times when more general resource-access
strategies such as the SRP [3] and the Priority Ceiling Protocol
(PCP) [37], [39] are instead used to arbitrate access to these
global resources; in [12], [13], and [23], we also discuss the
issue of designing the specific application systems such that the
resource holding times are decreased without compromising
feasibility. We believe that our consideration of global shared
resources—their abstraction by the parameters in the in-
terface, and the use we make of this information—is one of

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

204 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Fig. 1. Notation used throughout this paper.

our major contributions, and serves to distinguish our work
from other projects addressing similar topics. Our approach
toward resource holding times is discussed in greater detail in
Section VI.

The notation adopted in this paper is summarized in Fig. 1.

III. ALGORITHMS

In this section, we present the algorithms used by our open en-
vironment to make admission-control and scheduling decisions.
We assume that each application is characterized by the inter-
face parameters described in Section II. When a new application
wishes to execute, it presents its interface to the admission con-
trol algorithm, which determines, based upon the interface pa-
rameters of this and previously admitted applications, whether
to admit this application or not. If admitted, each application
is executed through a dedicated server. At each instant during
runtime, the (system-level) scheduling algorithm decides which
server (i.e., application) gets to run. If an application violates the
contract implicit in its interface, an enforcement algorithm po-
lices the application—such policing may affect the performance
of the misbehaving application, but should not compromise the
behavior of other applications.

We first describe the global scheduling algorithm used by our
open environment, in Section III-A. A description and proof
of correctness of our admission control algorithm follows (in
Sections III-B–III-E). The local schedulers that may be used by
the individual applications will be addressed in Section IV.

A. System-Level Scheduler

Our scheduling algorithm is essentially an application of the
Constant Bandwidth Server (CBS) of Abeni and Buttazzo [1],
enhanced to allow for the sharing of nonpreemptable serially
reusable resources and for the concurrent execution of different
applications in an open environment. In the remainder of this
paper, we will refer to this server with the acronym BROE:
Bounded-Delay Resource Open Environment.

Fig. 2. State transition diagram. The labels on the nodes and edges denote the
name by which the respective states and transitions are referred to in this paper.

CBS-like servers have an associated period , reflecting the
time-interval at which a continuously active server replenishes
its budget. For a BROE server, the value assigned to is as
follows:

(1)

In addition, each server maintains three variables: a deadline
, a virtual time , and a reactivation time . Since each

application has a dedicated server, we will not make any distinc-
tion between server and application parameters. At each instant
during runtime, each server assigns a state to the admitted appli-
cation. There are five possible states (see Fig. 2). Let us define
an application to be backlogged at a given time-instant if it has
any active jobs awaiting execution at that instant, and nonback-
logged otherwise.

• Each nonbacklogged application is in either the Inactive
or Noncontending states. If an application has executed for
more than its “fair share,” then it is Noncontending; else, it
is Inactive.

• Each backlogged application is in one the Contending,
Executing, or Suspended states.1 While contending, it is
eligible to execute; executing for more than it is eligible
results in it being suspended.

These variables are updated by BROE according to the fol-
lowing rules (i)–(ix) (let denote the current time).

(i) Initially, each application is in the Inactive state. If ap-
plication wishes to contend for execution at time-in-
stant then it transits to the Contending state [transition

1Note that there is no analog of the Suspended state in the original definition
of CBS [1].

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 205

(1) in Fig. 2]. This transition is accompanied by the fol-
lowing actions:

(ii) At each instant, the system-level scheduling algorithm se-
lects for execution some application in the Contending
state—the specific manner in which this selection is made
is discussed below. Hence, observe that only applications
in the Contending state are eligible to execute. An appli-
cation scheduled for execution undergoes transition (2).
The virtual time of an executing application is incre-
mented by the corresponding server at a rate

(iii) When an application is preempted by a higher priority
one, it undergoes transition (3) to the Contending state.

(iv) An application which no longer desires to contend for
execution (i.e., the application is no longer backlogged)
transits to the Noncontending state [transition (4)], and
remains there as long as exceeds the current time.

(v) When for some such application in the
Noncontending state, transitions back to the Inactive
state [transition (5)].

(vi) If the virtual time of the executing application be-
comes equal to , then application undergoes tran-
sition (6) to the Suspended state. This transition is accom-
panied by the following actions:

(2)

(3)

(vii) An application in Noncontending state which desires
to once again contend for execution (note , oth-
erwise it would be in the Inactive state) transits to the Sus-
pended state [transition (7)]. This transition is accompa-
nied by the same actions [(2) and (3)] of transition (6).

(viii) An application that is in the Suspended state neces-
sarily satisfies . As the current time in-
creases, it eventually becomes the case that .
At that instant, application transits back to the Con-
tending state [transition (8)].

(ix) An application that wishes to gain access to a shared
global resource must perform a budget check (i.e., is
there enough execution budget to complete execution of
the resource prior to ?). If ,
there is sufficient budget, and the server is granted access
to resource . Otherwise, the budget is insufficient to
complete access to resource by . In this case, tran-
sition (6) is undertaken by an executing application im-
mediately prior to entering an outermost critical section
locking a global resource2 , updating the server param-
eters according to (2) and (3).

2Each application may have additional resources that are local in the sense
that are not shared outside the application. Attempting to lock such a resource
does not trigger transition (6).

Rules (i)–(viii) basically describe a bounded-delay version
of the Constant Bandwidth Server, i.e., a CBS in which the
maximum service delay experienced by an application is
bounded by . A similar server has also been used in [27] and
[28]. The only difference from a straightforward implementa-
tion of a bounded-delay CBS is the deadline update of rule (vii)
associated to transition (7) (which has been introduced in order
to guarantee that when an application resumes execution, its
relative deadline is equal to the server period, so that the budget
is full) and the addition of rule (ix).

Rule (ix) has been added to deal with the problem of budget
exhaustion when a shared resource is locked. This problem, pre-
viously described in [16] and [18], arises when an application
accesses a shared resource and runs out of budget [i.e., is sus-
pended after taking transition (2)] before being able to unlock
the resource. This would cause intolerable blocking to other ap-
plications waiting for the same lock. If there is insufficient cur-
rent budget, taking transition (6) right before an application
locks a critical section ensures that when goes to the Con-
tending state [through transition (8)], it will have .
This guarantees that will receive units of execution
prior to needing to be suspended [through transition (6)]. Thus,
ensuring that the WCET of each critical section of is no
more than is sufficient to guarantee that experiences
no deadline-postponement within any critical section. Our ad-
mission control algorithm (Section III-B) does in fact ensure
that

(4)

for all applications and all resources ; hence, no lock-
holding application experiences deadline postponement.

At first glance, requiring that applications satisfy Condition
(4) may seem to be a severe limitation of our framework. But this
restriction appears to be unavoidable if CBS-like approaches are
used as the system-level scheduler: in essence, this restriction
arises from a requirement that an application not get suspended
(due to having exhausted its current execution capacity) whilst
holding a resource lock. To our knowledge, all lock-based mul-
tilevel scheduling frameworks impose this restriction explicitly
(e.g., [16]) or implicitly, by allowing lock-holding applications
to continue executing nonpreemptively even when their current
execution capacities are exhausted (e.g., [10], [18], and [40]).

We now describe how our scheduling algorithm determines
which BROE server (i.e., which of the applications currently in
the Contending state) to select for execution at each instant in
time.

In brief, we implement EDF among the various contending
applications, with the application deadlines (the ’s) being
the deadlines under comparison. Access to the global shared
resources is arbitrated using SRP.3

In greater detail:
1) Each global resource is assigned a ceiling

which is equal to the minimum value from among all
the period parameters of that use this resource.

3Recall that in our scheduling scheme, deadline postponement cannot occur
for an application while it is in a critical section—this property is essential to
our being able to apply SRP for arbitrating access to shared resources.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

206 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Initially, for all the resources. When an
application is admitted that uses global resource

must subse-
quently be recomputed when such an application leaves
the environment.

2) At each instant, there is a system ceiling, which is equal to
the minimum ceiling of any resource that is locked at that
instant.

3) At the instant that an application becomes the ear-
liest-deadline one that is in the Contending state, it is se-
lected for execution if and only if its period parameter
is strictly less than the system ceiling at that instant. Else,
it is blocked while the currently executing application con-
tinues to execute.

As stated above, this is essentially an implementation of
EDF SRP among the applications. The SRP requires that the rel-
ative deadline of a job locking a resource be known beforehand;
that is why our algorithm requires that deadline postponement
not occur while an application has locked a resource.

B. Admission Control

The admission control algorithm checks for four things.
1) As stated in Section III-A, we require that each applica-

tion have all its resource holding times (the ’s)
be —any application whose interface does not
satisfy this condition is summarily rejected. If the applica-
tion is rejected, the designer may attempt to increase the

parameter and resubmit the application; increasing
will simultaneously increase , while decreasing the

’s.
2) The sum of the VP speeds—the parameters—of all ad-

mitted tasks may not exceed the computing capacity of the
shared processor (assumed to be equal to one). Hence,
is rejected if admitting it would cause the sum of the
parameters of all admitted applications to exceed one.

3) The effect of interapplication blocking must be con-
sidered—can such blocking cause any server to miss a
deadline? A server-deadline miss occurs for a backlogged
server when and . The issue of
interapplication blocking is discussed in the remainder of
this section.

4) The admission of an application (if it satisfies the above
three items) must be delayed until the first time instant
during which all global resources needed by are avail-
able (i.e., not locked by other applications). This delay
is necessary to avoid raising a resource’s priority ceiling
while it is currently locked by an application with larger pe-
riod than ’s. As discussed in Theorem 1, the delay will
help avoid undesirable blocking within SRP. Please note
that the delay of application ’s admittance depends upon
the system reaching a lock “stasis.” The length of this delay
is bounded by the longest response time (elapsed total time
between resource lock and release) of any critical section
that accesses a resource needed by . Thus, is po-
tentially delayed for a longer than usual amount of time;
however, this decision prevents previously admitted appli-
cations from being penalized with additional blocking and
avoids deviation from the standard SRP policy.

Admission control and feasibility—the ability to meet all
deadlines—are two sides of the same coin. As stated above,
our system-level scheduling algorithm is essentially EDF,
with access to shared resources arbitrated by the SRP. Hence,
the admission control algorithm needs to ensure that all the
admitted applications together are feasible under EDF SRP

scheduling. We therefore looked to the EDF SRP feasibility
test in [6], [29], [36] for inspiration and ideas. In designing an
admission control algorithm based upon these known EDF SRP

feasibility tests there are a series of design decisions. Based
upon the available choices, we came up with two possible
admission control algorithms: a more accurate one that requires
information regarding each application’s resource holding time
for every resource, and a slightly less accurate test that reduces
the amount of information required by the system to make an
admission control decision.

Prior to introducing the admission control algorithms,
Section III-C will prove that many of the desirable properties
of SRP that hold for sporadic task systems [3] continue to hold
for our BROE server. Section III-D will provide useful bounds
on the demand of a server. Finally, Section III-E will describe
and prove the correctness of two admission control algorithms.

C. Stack-Resource Policy Properties

As mentioned at the beginning of this section,
for every global resource used by application . The

previous considerations allow deriving some important proper-
ties for the open environment, since there won’t be any deadline
postponement inside a critical section, we can view each appli-
cation execution as a release sequence of “chunks” (i.e., separate
jobs), as suggested in [16]. A new chunk is released each time
the application enters the Contending state [transitions (1) and
(8)] and is terminated as soon as the state transitions from Ex-
ecuting [transitions (4) and (6)]. We will denote the ’th chunk
of application as . The release time of is denoted as

. The termination time of is denoted by . Fi-
nally, the deadline of chunk is the value of the server at
the time it transitioned to contending; the deadline of chunk
is represented by . Let denote the server’s value of

at time .
A priority inversion between applications is said to occur

during runtime if the earliest-deadline application that is con-
tending—awaiting execution—at that time cannot execute
because some resource needed for its execution is held by
some other application. This (later-deadline) application is
said to block the earliest-deadline application. SRP bounds the
amount of time that any application chunk may be blocked. The
enforcement mechanism used in our open environment allows
proving the following Theorem.

Theorem 1 (SRP Properties): There are no deadlocks be-
tween applications in the open environment. Moreover, all
chunks of an application that does not exceed the
declared resource-holding-time have the following properties.

• cannot be blocked after it begins execution.
• may be blocked by at most one later deadline applica-

tion for at most the duration of one resource-holding-time.
Proof: Note that admission-control property 4 of

Section III-B ensures that resource ceilings are not raised

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 207

while an application is locked. Thus, our resource-arbitration
protocol is identical to SRP and the proof is identical to the
Proof of [3, Th. 6]. The only difference is that in our case the
items to be scheduled are application chunks instead of jobs.

D. Bounding the Demand of Server Chunks

It is useful to quantify the amount of execution that a chunk of
a server requires over any given time interval. We quantify the
demand of a server chunk, and attempt to bound the total de-
mand (over an interval of time) by a server for . The bound
on demand will be useful in the next subsection which discusses
our admission control algorithms. The following are formal def-
initions of demand for a server chunk and the total demand for
a server.

Definition 1 (Demand of Server Chunk): The demand
of server chunk over the interval is

the amount of execution that (with deadline and release
time in the interval) must receive before making a transi-
tion from Executing to Noncontending or Suspended. Formally,

is equal to

(5)
Definition 2 (Cumulative Demand of BROE Server for):

The cumulative demand of over the interval is the
total demand of all of ’s server chunks with both release times
and deadlines within the interval

(6)

Different chunks of the same server may execute for different
amounts of time. The reason is that some chunks may terminate
early due to becoming noncontending or trying to enter a critical
section [i.e., rule (iv) or (ix)]. For these chunks, the execution
they receive may be less than . Unfortunately, there are in-
finitely many possible application execution scenarios over any
given interval (resulting in different sequences of state transi-
tions). With all these possibilities, how does one determine the
cumulative demand of over any interval? Fortunately, we
may, in fact, derive upper bounds for the cumulative demand of
a server for specific sequences of chunks. The upper bound for
these sequences will be used in proof of correctness for the ad-
mission control algorithm. In the remainder of this subsection,
we will present a series of lemmas that derives the upper bound
on the cumulative demand of a sequence of server chunks.

The first lemma states that the virtual time of a server
cannot exceed the deadline parameter .

Lemma 1: For all chunks of BROE server of

(7)

Proof: Observe that rule (vi) implies that the virtual time
does not exceed the current server deadline . Therefore,

whenever any chunk is terminated [via transitions (4), or
(6)] at time , the server’s virtual time does
not exceed the deadline of the chunk.

The next lemma formally states that, when a chunk terminates
with transition (6), the virtual time does not increase until the
release of the next chunk.

Lemma 2: If was released due to transition (8) (i.e.,
Suspended to Contending), then .

Proof: If was released due to transition (8), the
transition prior to (8) must have been either (6), or the succes-
sive transitions of (4) and (7). For these transitions, one of the
server rules (iv), (vi), (vii), or (ix) applies when terminating the
previous chunk . However, notice that none of these rules
updates , and since virtual time cannot progress unless the
server is contending, the virtual time at the release of
[i.e.,] must equal the virtual time at the termina-
tion of [i.e.,].

In the final lemma of this subsection, we consider any se-
quence of chunks where the server does not become inactive in
between releases and the virtual time at the release of the first
chunk equals actual time. For such a sequence of chunks, we
show that the demand of the chunks from the release time of
the first chunk of the sequence to the deadline of the last chunk
of the sequence does not exceed times the sequence length
(i.e., the deadline of the last chunk minus release time of the first
chunk).

Lemma 3: If is a sequence of succes-
sively released chunks by the BROE server for where sat-
isfies , and were all re-
leased due to transition (8); if meet their dead-
line, then

(8)

Proof: According to Definition 2,
is the sum of the for each chunk ,
where . Since both and must
be included in the interval and chunks

meet their deadlines, (5) implies

(9)

Since chunks are released due to transition
(8), Lemma 2 implies that for all

. Substituting this into (9)

(10)

By the telescoping summation above, it may be shown that
equals

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

208 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

. By the antecedent of the
lemma, equals . Thus

(11)

It remains to determine which
is dependent on whether meets its deadline. If
meets its deadline, then equals

. Lemma 1 implies that
; so, does

not exceed . Combining this fact and
(11) implies (8) of the lemma. Therefore, the lemma is satisfied
when meets its deadline.

Now, consider the case where misses its deadline. By
Definition 1, equals . Observe
that by antecedent of the lemma, is released due to transi-
tion (8); either rule (vi), (vii), or (ix) will be used to set .
Each of these rules sets

. Substituting the value of
and observing by Lemma 2 that equals

, we derive equals
. Finally, substituting the new

expression for into (11) and can-
celing terms gives us (8) of the lemma. Thus, the lemma is also
satisfied when misses its deadline.

E. Admission Control Algorithms

Adapting the proofs from the EDF SRP feasibility tests in [6]
and [3] for the case where application chunks, instead of jobs,
are the items to be scheduled, we can find a direct mapping rela-
tion between resource-holding-times of applications and critical
section lengths of jobs. The maximum blocking experienced by

is then

(12)

In other words, the maximum amount of time for which
can be blocked is equal to the maximum resource-holding-time
among all applications having a server period and sharing
a global resource with some application having a server period

. The following test may be used when the admission
control algorithm has information from each application on
which global resources are accessed and what the value of

is.
Theorem 2: Applications may be composed upon

a unit-capacity processor together without any server missing a
deadline, if

(13)

where the blocking term is defined in (12).
Proof: This test is similar to the EDF SRP feasibility tests

in [6] and [3], substituting jobs and critical section lengths with,
respectively, application chunks and resource-holding-times.
We prove the contrapositive of the theorem.

Assume that the first deadline miss for some server chunk oc-
curs at time . Let be the latest time prior to such that

there is no executing (and, therefore, no contending) application
with deadline before ; since there exists an executing server
from to , the processor is continuously busy in the interval

. Observe that is guaranteed to exist at system-start
time. The total demand imposed by server chunks in is
defined as the sum of the execution costs of all chunks entirely
contained in that interval, i.e., .

We will now show that the demand of any application
does not exceed . Let be
the set of server chunks that the server for releases in the
interval with deadlines prior or equal to . If is
empty, then the demand trivially does not exceed ;
so, assume that is nonempty. Since the server for is not
in the Executing (or Contending) state immediately prior , it
is either in the Noncontending, Inactive, or Suspended state for
a nonzero-length time interval prior to [note this disallows
the instantaneous transition of (6) and (8)]; therefore, the first
chunk of must have been generated due to either transition (1)
or (8), in which case either rule (i) or rule (viii) apply. Thus
is the first chunk in . We may thus par-
tition into disjoint subsequences of successively generated
chunks , where .

For each has equal to , and

are all released due to transition (8). Ob-
serve the chunks of each subsequence span the interval

. By Lemma 3, the demand

of over the subinterval does not ex-

ceed . Furthermore, the server for
does not execute in intervals not covered by the chunks

of some subsequence . Since is a
partition of , the subintervals do not overlap; this implies
that . Therefore the
total demand of over interval does not exceed

.
Notice that only applications with period less than

can release chunks inside the interval: since any application
is not backlogged at time , the first chunk released after
will have deadline at least . Let be the application
with the largest . For Theorem 1, at most one
server chunk with deadline later than can execute in the
considered interval. Therefore, only one application with period
larger than can execute, for at most the length of one re-
source-holding-time, inside the interval. The maximum amount
of time that an application with period larger than can exe-
cute in is quantified by .

Since some server chunk missed a deadline at time , the
demand in , plus the blocking term as defined in
(12), must exceed

(14)

Dividing by , and then observing that
, we have

(15)

which contradicts (13).

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 209

However, such an exact admission control test based on a
policy of considering all resource usages (as the theorem above)
has drawbacks. One reason is that it requires the system to keep
track of each application’s resource-hold times. An even more
serious drawback of the more exact approach is how to fairly
account for the “cost” of admitting an application into the open
environment. For example, an application that needs a VP speed
twice that of another should be considered to have a greater cost
(all other things being equal); considered in economic terms,
the first application should be “charged” more than the second,
since it is using a greater fraction of the platform resources and
thus having a greater (adverse) impact on the platform’s ability
to admit other applications at a later point in time.

However, in order to measure the impact of global resource-
sharing on platform resources, we need to consider the resource
usage of not just an application, but of all other applications in
the systems. Consider the following scenario. If application
is using a global resource that no other application chooses to
use, then this resource usage has no adverse impact on the plat-
form. Now, if a new application with a very small period
parameter that needs this resource seeks admission, the impact
of ’s resource-usage becomes extremely significant (since
would, according to the SRP, block and also all other applica-
tions that have a period parameter between ’s and ’s). So,
how should we determine the cost of ’s use of this resource,
particularly if we do not know beforehand whether or not
will request admission at a later point in time?

To sidestep the dilemma described above, we believe a good
design choice is to effectively ignore the exact resource-usage
of the applications in the online setting, instead considering only
the maximum amount of time for which an application may
choose to hold any resource; also, we did not consider the iden-
tity of this resource. That is, we required a simpler interface than
the one discussed in Section II, in that rather than requiring each
application to reveal its maximum resource-holding times on all

resources, we only require each application to specify
a single resource-holding parameter , which is defined as
follows:

(16)

The interpretation is that may hold any global resource for
up to units of execution. With such characterization of each
application’s usage of global resources, we ensure that we do
not admit an application that would unfairly block other appli-
cations from executing due its large resource usage. This test,
too, is derived directly from the EDF SRP feasibility test of The-
orem 2, and is as follows:

Algorithm Admit

1) for each : do
2) if

return “reject”
3) for each do
4) if

return “reject”
5) return “admit”

It follows from the properties of the SRP, (as proved in [3]) that
the new application , if admitted, may block the execution of
applications with period parameter . Moreover, by
Theorem 2, it may interfere with applications with period
parameter . Since the maximum amount by which any
application with may block an application is
equal to , lines 1–2 of Procedure ALGORITHM ADMIT deter-
mine whether this blocking can cause any application with

to miss its deadline. Similarly, since the maximum
amount by which application may block any other applica-
tion is, by definition of the interface, equal to , lines 3–4 of
ALGORITHM ADMIT determine whether ’s blocking causes
any other application with to miss its deadline. If the
answer in both cases is “no,” then ALGORITHM ADMIT admits
application in line 5.

F. Enforcement

One of the major goals in designing open environments is
to provide interapplication isolation—all other applications
should remain unaffected by the behavior of a misbehaving
application. By encapsulating each application into a BROE

server, we provide the required isolation, enforcing a correct
behavior for every application.

Using techniques similar to those used to prove isolation
properties in CBS-like environments (see, e.g., [1] and [27]), it
can be shown that our open environment does indeed guarantee
interapplication isolation in the absence of resource-sharing. It
remains to study the effect of resource-sharing on interapplica-
tion isolation.

Clearly, applications that share certain kinds of resources
cannot be completely isolated from each other: for example
if one application corrupts a shared data-structure then all the
applications sharing that data structure are affected. When a
resource is left in an inconsistent state, one option could be
to inflate the resource-holding time parameters with the time
needed to reset the shared object to a consistent state, when
there is such a possibility.

However, we believe that it is rare that truly independently
developed applications share “corruptible” objects—good pro-
gramming practice dictates that independently developed appli-
cations do not depend upon proper behavior of other applica-
tions (and in fact this is often enforced by operating systems).
Hence the kinds of resources we expect to see shared between
different applications are those that the individual applications
cannot corrupt. In that case, the only misbehavior of an applica-
tion that may affect other applications is if it holds on to a
global resource for greater than , or than the time units
of execution that it had specified in its interface. To prevent this,
we assume that our enforcement algorithm simply preempts

after it has held a global resource for , and
ejects it from the shared resource. This may result in ’s in-
ternal state getting compromised, but the rest of the applica-
tions are not affected. Note that such an enforcement algorithm
might require to set a timer each time a resource is locked, in-
creasing the system overhead. We believe this is the minimum
price to pay for guaranteeing temporal isolation among applica-
tions that share global resources. Applications that repeatedly
access global resources will need to be charged with a larger

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

210 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

overhead, unless performing multiple accesses within a single
lock.

When applications do share corruptible resources, we have
argued above that isolation is not an achievable goal; however,
containment [19] is. The objective in containment is to ensure
that the only applications affected by a misbehaving application
are those that share corruptible global resources with it—the in-
tuition is that such applications are not truly independent of each
other. We have strategies for achieving some degree of contain-
ment; for instance, one option could be to donate to an appli-
cation locking a corruptible resource the bandwidth of applica-
tions that share the same resource. However, discussion of these
strategies is beyond the scope of this document.

G. Bounded Delay Property

The bounded-delay resource partition model, introduced
by Mok et al. [35], is an abstraction that quantifies resource
“supply” that an application receives from a given resource.

Definition 3: A server implements a bounded-delay partition
if in any time interval of length during which the

server is continually backlogged, it receives at least

units of execution.
Definition 4: A bounded-delay server is a server that imple-

ments a bounded-delay partition.
We will show that when every application is admitted through

a proper admission control test, BROE implements a bounded
delay partition. Before proving this property, we need some in-
termediate lemmas. The first lemma quantifies the minimum vir-
tual-time for a server for application that is in the Con-
tending or Executing state.

Lemma 4: Given BROE servers of applications
satisfying Theorem 2, if server chunk of server is exe-
cuting or contending at time (where),
then

(17)

Proof: The proof is by contradiction. Assume that all
servers have been admitted to the open environment via The-
orem 2, but there exists a server in the Contending or
Executing state at time that has

(18)

Since never decreases, the above strict inequality implies that

(19)

We will show that if (18) holds, there exist a legal scenario
under which will miss a server deadline. Assume that ap-
plication has units of execution backlogged at time

(the server can be in any state immediately prior to

); also assume that no job of application requests any
global resources during the next units of ’s execution
(i.e., transition (6) will not be used). The described scenario is
a legal scenario for application with parameter and .

Note that each of the server deadline update rules essen-
tially sets equal to ; therefore, equals

. The current time remaining until ’s
deadline is . The virtual time of at time

by (18) and (19) satisfies the following inequality:

(20)

The remaining amount of time at time that the server for
must execute for to equal (i.e., complete its execu-
tion) is . Combining this expres-
sion with (20), the remaining execution time is strictly greater
than . However, this exceeds the remaining
time to the deadline; since the server for is continuously
in the Contending or Executing state throughout this scenario,
the server will miss a deadline at . This contradicts the
lemma, given that the servers satisfied Theorem 2. Our original
supposition of (18) is falsified and the lemma follows.

We next show that at any time a server chunk is released for
, the actual time must exceed the virtual time.

Lemma 5: For any server chunk of the BROE server for
,

(21)

Proof: The lemma may be proved by analyzing each of the
server rules involved in moving the server state to Contending.
If the server state for is inactive prior to the release of chunk

, then rule (i) sets to current time, and the lemma is sat-
isfied. If the server was suspended immediately prior to the re-
lease of , rule (viii) releases only when equals .
Observe that all the rules of the server set to a value greater
than or equal to . Thus, is either zero
or negative.

The final lemma before proving that BROE is a bound-delay
server, shows that for any server the absolute difference between
virtual time and actual time is bounded in terms of the server
parameters.

Lemma 6: For an application admitted in the open envi-
ronment, if the server for is backlogged at time , then

(22)

Proof: If the server for is in the Suspended state, then
because the server is backlogged this implies that ;
so, the server will not become contending until time . Let

be the last time prior to that the server was contending or
executing; it’s easy to see that . So,
we will reason about and show for any such contending or
executing time . If the server for was
contending or executing at time , let instead equal . We will
show in the remainder of the proof that

. Let be the server chunk corresponding
to the last contending or executing state at for application .
Observe that this implies that .

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 211

Let us first show that . Observe
that because virtual time progresses at a rate equal to and
cannot exceed

(23)

Subtracting from both sides, and observing that the RHS is
maximized for (since , the
“min” term increases at a rate of in

, and remains constant for all) implies

(24)

Lemma 5 implies that . Thus, (24)
may be written as ,
proving the upper bound on (and thus an upper bound
on).

We will now prove a lower bound on . By Lemma
4 and the fact that the server is contending or executing at time

, we have a lower bound on the virtual time at

(25)

Observe that for all
, the “max” term in the RHS of the above

expression is zero; thus, the RHS decreases in from
to . For greater than

, the “max” term increases at a rate
of . Therefore, the RHS of the above inequality is
minimized when equals . Thus,

, proving the lower bound on
; the lemma follows.

We are now ready to prove that BROE implements a bounded-
delay partition.

Theorem 3 (Bounded-Delay Property): BROE is a bounded-
delay server.

Proof: From the definition of the BROE server, it can be
seen that the virtual time is updated only when an inactive
application goes active or whenever subsequently it is executing.
In the latter case, is incremented at a rate. Thus, there
is a direct relation between the execution time allocated to the
application through the BROE server and the supply the appli-
cation would have received if scheduled on a VP of speed .
The quantity indicates the advantage the application

executing through the BROE server has compared with VP
in terms of supply. If the above term is positive, the application
received more execution time than the VP would have by time
. If it is negative, the BROE server is “late.”

From Lemma 6, the execution time supplied to an application
through a dedicated BROE server never exceeds nor is exceeded
by the execution time it would have received on a dedicated VP
for more than time units. The “worst case” is when
both displacements happen together, i.e., interval starts when

and ends when
. This interval in which the BROE server can be delayed from

executing, while still satisfying the bound on from

Fig. 3. Worst case scenario discussed in the Proof of Theorem 3. The applica-
tion receives execution during the shaded intervals.

Lemma 6 is of length at most twice . By the definition
of (1), this is equal to . Thus, the maximum delay that an
application executing on a BROE server may experience is .

In other words, it can be shown that the “worst case” (see
Fig. 3) occurs when application :

• receives execution immediately upon entering the Con-
tending state (at time in the figure), and the interval of
length begins when it completes execution and under-
takes transition (6) to the Suspended state (at time in the
figure);

• after having transited between the Suspended, Contending,
and Executing states an arbitrary number of times, under-
takes transition (8) to enter the Contending state (time in
the figure) at which time it is scheduled for execution [tran-
sition (2)] as late as possible; the interval ends just prior to

being selected for execution (time in the figure).
A job arriving at time will be served by the BROE with the
maximum delay of from the supply granted by a VP of speed

. Since the execution received in an interval going from
the deadline of the first chunk (released at) until the release
time of the last one at cannot be higher than , the supply
granted over interval is . By the
definition of (1), this is equal to .

IV. APPLICATION-LEVEL SCHEDULERS

In the previous section, we analyzed how to compose multiple
servers on the same processor without violating the bounded-
delay server constraints. Provided that these global constraints
are met, we now address the local schedulability problem, to
verify if a collection of jobs composing an application can be
scheduled on a bounded delay server with given and ,
when jobs can share exclusive resources with other applications.

To do this, we have three options on how to schedule and
validate the considered collection of jobs.

1) Validate the application on a dedicated VP with speed
using a given scheduling algorithm. If every job is com-
pleted at least time-units before its deadline, then the
application is schedulable on a bounded-delay partition

when jobs are scheduled according to the same
order as they would on a dedicated VP schedule.

2) Validate the application on a dedicated VP with speed
using EDF. If every job is completed at least time-
units before its deadline, then the application is schedulable
with EDF on a bounded-delay partition , without
needing to “copy” the VP schedule.

3) Validate the application by analyzing the execution time
effectively supplied by the partition in the worst-case and
the demand imposed by the jobs scheduled with any sched-
uling algorithm, avoiding validation on a VP.

These options are hereafter explained in more detail.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

212 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

A. Replicating the VP Scheduling

When scheduling a set of applications on a shared processor,
there is sometimes the need to preserve the original scheduling
algorithm with which an application has been conceived and
validated on a slower processor. If this is the case, we need
to guarantee that all jobs composing the application will still
be schedulable on the bounded-delay partition provided by
the open environment through the associated BROE server.
Mok et al. [22], [35] have previously addressed this problem.
We restate their result, adapting it to the notation used so far.

Theorem 4: ([35, Th. 6]): Given an application and
a Bounded Delay Partition , let denote a valid
schedule on a VP with speed , and the schedule of
on partition according to the same execution order
and amount as . Also let denote the largest amount of
time such that any job of is completed at least time
units before its deadline. is a valid schedule if and only if

.
The theorem states that all jobs composing an application are

schedulable on a BROE server having equal to the VP speed
and equal to the jitter tolerance of the VP schedule, provided
that jobs are executed in the same execution order of the VP
schedule.

In order to be applicable to general systems, this approach
would require that each individual application’s scheduling
event (job arrivals and completions) be “buffered” during the
delay bound —essentially, an event at time is ignored
until the earliest time-instant when —so that events
are processed in the same order in the open environment as they
would be if each application were running upon its dedicated
VP. However, we will see that such buffering is unnecessary
when the individual application can be EDF-scheduled in the
open environment.

B. Application-Level Scheduling Using EDF

To avoid the complexity of using buffers to keep track of the
scheduling events, it is possible to use a simplified approach.
When an application does not mandate to be scheduled with
a particular scheduling algorithm, we show that EDF can be
optimally used as application-level scheduler for the partition,
without needing to “copy” the VP behavior. To distinguish the
buffered from the native version of the partition local scheduler,
we will call VP-EDF the application-level scheduler reproducing
the VP behavior, while the normal local scheduler using only
jobs earliest deadlines will be simply called EDF.

Definition 5: A scheduling algorithm is resource-burst-ro-
bust if advancing the supply, the schedulability is preserved.

Lemma 7 (From Feng [21]): EDF is resource-burst-robust.
Lemma 8: Consider an application , composed by a set of

jobs with fixed release times and deadlines. If all jobs of applica-
tion always complete execution at least time units prior
to their deadlines when scheduled with EDF upon a dedicated VP
of computing capacity , then all jobs of are schedulable
with EDF on a partition .

Proof: We prove the contrapositive. Assume a collection
of jobs of an application completes execution at least
time units prior to their deadlines when scheduled with EDF on a

dedicated -speed VP, but some of these jobs miss a deadline
when is scheduled with EDF on a partition . Let

be the first time a deadline is missed and let denote the
latest time-instant prior to at which there are no jobs with
deadline awaiting execution in the partition schedule
(if there was no such instant). Hence, over , the
partition is only executing jobs with deadline , or jobs
that were blocking the execution of jobs with deadline .
Let be the set of such jobs.

Since a deadline is missed, the total amount of demand of
jobs in during upon the BROE server is greater than
the execution time supplied in the same interval. From Lemma
7, we know that the minimum amount of execution would
receive in interval , is .

Consider now the VP schedule. Since every job completes at
least time-units before its deadline, the job that misses its
deadline in the partition schedule will complete before instant

in the VP schedule. Moreover, since EDF always
schedules tasks according to their absolute deadline, no jobs in

will be scheduled in interval . Therefore,
the total demand of jobs in during does not exceed

. However, this contradicts the fact that
the minimum amount of execution that is provided by the BROE

server over this interval is .
Lemma 8 is a stronger result than the one in [35, Corollary 4],

where applications needed to be scheduled according to VP-EDF.
In [21, Th. 2.7], a more general result is proved, saying that any
resource-burst-robust scheduler can be used without needing to
reproduce the VP schedule. However, there is a flaw in this re-
sult; for instance, even though DM is a resource-burst-robust
scheduler, it cannot be used without buffering events. To see
this, consider the following example.

Example 1: An application composed of two periodic tasks
and is validated on a processor

of speed . Each job is completed at least
time units prior to its deadline. However, when is scheduled
on a bounded-delay partition , it can miss
a deadline when both and release jobs at time and the
server contemporarily exhausts its budget. The application may
have to wait until time to receive service, at which
point executes in (exhausting the budget). The
next service interval is , when the next job of
is scheduled. Then, has to wait for the next service interval

, but at that point it would miss its deadline.
Notice that since the Proof of Lemma 8 does not rely on any

particular protocol for the access to shared resources, the va-
lidity of the result can be extended to every reasonable policy,
like SRP [3] or others, provided that the same mechanism is used
for both the VP and the partition schedule. Since EDF SRP is
an optimal scheduling algorithm for VPs [6], the next theorem
follows.

Theorem 5: A collection of jobs is schedulable with EDF SRP

on a partition if and only if it is schedulable with some
scheduling algorithm on an -speed VP with a jitter tolerance
of , i.e., all jobs finish at least time units before their
deadline.

Therefore, when there is no limit on the algorithm to be used
to schedule the application jobs on a partition, using EDF SRP

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 213

is an optimal choice, since it guarantees that all deadlines are
met independently from the algorithm that has been used for the
validation on the dedicated VP. This also explains the meaning
of the names we gave in Section II to and parameters.

On the contrary, when the scheduling algorithm cannot be
freely chosen, for instance when a fixed priority order among
tasks composing an application has to be enforced, we showed
in Section IV-A that a buffered version of the VP schedule can be
used. However, to avoid the computational effort of reproducing
the VP scheduling order at runtime, some more expense can
be paid offline by analyzing the execution time supplied by the
partition together with the demand imposed by the jobs of the
application. The next section addresses this problem.

C. Application-Level Scheduling With Other Algorithms

The application may require that a scheduler other than
EDF SRP be used as an application-level scheduler. When a
buffered version of the VP schedule is not feasible due to the
associated runtime complexity, an alternative could be to use a
more sophisticated schedulability analysis instead of the vali-
dation process on a dedicated VP. This requires one to consider
the service effectively supplied by the open environment in
relation to the amount of execution requested by the applica-
tion. Our BROE server implements a bounded-delay server in
the presence of shared resources. Examples of analysis for the
fixed-priority case under servers implementing bounded-delay
partitions or related partitions, in absence of shared resources,
can be found in [28], [35], [41], [42], and easily applied to
our open environment. We conjecture that the results for local
fixed-priority schedulability analysis on resource partitions can
be easily extended to include local and global resources, and
be scheduled by BROE without modification to the server. We
leave the exploration of this conjecture as a future work.

V. LOCAL SCHEDULABILITY ANALYSIS

Since we showed (Theorem 5) that EDF SRP can be used
to optimally schedule the jobs composing an application on a
bounded-delay partition, we choose this algorithm as the de-
fault local scheduling algorithm for our open environment. This
means that whenever an application does not require a different
scheduling policy, the open environment will schedule the jobs
of an admitted executing application using EDF with resource
access arbitrated through the SRP protocol, since this choice al-
lows optimizing system performances. We will hereafter derive
local schedulability tests for this case.

Since we are moving the detail of our analysis from server
chunks to the jobs composing an application, we need to extend
the notational model used. In the rest of this paper, we will con-
sider an application to be composed of sporadic tasks
[8].4 We will indicate with , the WCET, relative dead-
line, and period or minimum interarrival time of task . The
maximum size of a critical section on resource accessed by
a task is denoted with . To avoid confusion with the
shared resource policy adopted at system-level and described
in Section III-A, we will distinguish between local and global

4We believe that the following analysis can be easily adapted also for more
general models, such as arbitrary collections of jobs.

ceiling of a shared resource . Global ceiling is given
by the minimum value from among all the period parameters
of applications that use resource ; local ceiling is
given, locally to each application , by the minimum value
from among all relative deadlines of tasks that can
lock resource . Note that the system ceiling used for global
SRP—equal to the minimum global ceiling of any resource that
is locked at a given instant—corresponds at the local level with
the application ceiling for local SRP—defined as the minimum
local ceiling of any resource that is locked at a given instant by
tasks of the considered application.

For any collection of jobs released by an application and
any real number , the demand bound function
is defined as the largest cumulative execution requirement of
all jobs that can be generated by to have both their arrival
times and their deadlines within a contiguous interval of length
. For instance, for the sporadic task model it has been shown

[8] that the cumulative execution requirement of jobs over an
interval is maximized if all tasks arrive at the start of
the interval—i.e., at time-instant —and subsequent jobs arrive
as rapidly as permitted—i.e., at instants

(26)

Algorithms are described in [8] for efficiently computing
in constant time for the sporadic task model, for

any .
Shin and Lee [42] showed that , together with

a bound on the provided supply, can be used to derive a
schedulability condition for periodic task systems scheduled
on a bounded-delay resource partition . We restate
their result in terms of general collection of jobs released by
an application , whose execution requirements are captured
through a demand bound function .

Theorem 6 (Adapted From Shin and Lee [42]): An appli-
cation is EDF-schedulable on a bounded-delay partition

if for all

(27)

Baruah proposed in [6] a technique for analyzing systems
scheduled with EDF SRP using the demand-bound function. The
approach is to calculate, for all , the maximum amount
of time that a job with relative deadline at most could be
“blocked” by a job with relative deadline greater than . The
following function [6] quantifies this maximum blocking over
an interval of length in an application :

(28)

The next corollary follows from the application of [6, Th. 1]
and Theorem 6 above.

Corollary 1: An application is EDF SRP-schedulable on
a bounded-delay partition if for all

(29)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

214 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Using techniques from [8], it is possible to bound the number of
points at which inequality (29) should be checked. It is sufficient
to check only the values of satisfying , for some

, and some integer . The time complexity
of determining whether an application is EDF SRP-schedu-
lable on a bounded delay resource partition cannot be larger than
the complexity of the feasibility analysis for independent appli-
cations (see [6] for details). For a resource partition
and an application , an upper bound on the values of to be
checked is given by the least of (i) the least common multiple
(lcm) of , and (ii) the following expression:

where denotes the utilization of

; and denotes the application utilization:
. This bound may in general be exponential in the

parameters of ; however, it is pseudopolynomial if the appli-
cation utilization is a priori bounded from above by a constant
less than .

VI. RESOURCE HOLDING TIMES

In the previous sections, the interface parameters and
have been exhaustively characterized for the considered open
environment. This section will instead give further details on the
third parameter, the resource holding time—i.e., the maximum
time for which an application can lock a global
resource —and on the methods that can be used to compute
it for a given application.

A. Computing Resource Holding Times

When a resource is locked by an application executing on a
bounded delay server, it may happen that during the time a re-
source is locked, the server upon which the locking task executes
is preempted by higher priority servers. Even if this time has
not to be accounted inside (not being part of the blocking
term in the test for the server admission control), higher pri-
ority tasks with periods lower than the application ceiling can
meanwhile arrive in the blocked server, increasing the resource
holding time. Therefore, this delay in the execution supplied to
the preempted application has to be properly considered when
computing .

Examining rule (ix) of the BROE server in Section III-A, it is
easy to see that when an application locks a resource , it
can execute for the duration of the whole resource holding time

before needing to be suspended. This execution
time will be supplied in the worst case after

time units. On the other hand, if an application holds a
resource for more than , the enforcement mechanism de-
scribed in Section III-F will release the lock.

To compute the resource holding time under EDF SRP, we
will adapt the technique described in [13] (which is valid for
the case in which a dedicated computing resource is used) to the
case in which the execution is supplied after time units.
(Note that is the maximum delay in execution that an ap-
plication can experience while executing within a server chunk;

Fig. 4. Worst case supply when a global resource is locked.

otherwise, the server will miss a deadline.) The supply func-
tion to consider is null for time-units and than grows with
unitary slope until the resource is unlocked (see Fig. 4). The
algorithms to compute the resource holding times in [13] and
[23] assume instead the availability of a dedicated unit-capacity
processor, having full supply without any delay. To adapt these
algorithms to the case considered in this paper, it is necessary
to add a term in the fixed point iteration formula used to
derive the resource holding times. The resource holding time

of an application is defined as the maximum time
any task may hold a resource

The cumulative execution requests of jobs that can preempt
while it is holding a resource for units of time, along

with the maximum amount can execute on resource , and
the maximum supply delay , is given by (see [13])

(30)

Let be the smallest fixed point of function (i.e.,
). The resource holding time of a task

is given by

(31)

The iteration can be aborted when exceeds
, since in that case a deadline could be missed,

and the application is rejected. More details on the above
technique can be found in [13], where it is proved for a similar
case that a fixed point is reached in a finite (pseudopolynomial)
number of steps.

Note that the resource holding time represents the maximum
supply needed by an application to release a lock. It is therefore
a measure of the execution time needed rather than a measure

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 215

of the real time elapsed between the lock and release of the
resource.5

B. Decreasing Resource Holding Times

Since the resource holding time determines the time for which
other servers below the global ceiling of the locked resource
can be blocked, it is very important to keep this value as small
as possible. In this way, it is possible to compose more servers
on the same system without having to account for a large server
blocking time. One way to do that, is using techniques from [13],
[23] and [12]. Basically, these techniques artificially decrease
the ceiling of a resource by adding a dummy critical section
to tasks with a deadline lower than the resource ceiling, when
this does not affect the schedulability of the application. The
semantics of the application do not change, but the resulting
resource holding time decreases due to the reduced number of
preemptions on a task holding the resource. The procedure to
decrease the ceiling to the minimum possible value depends on
the scheduling algorithm used. The EDF case is treated in [13],
and [23], while [12] deals with RM/DM. Both works assume a
dedicated computing resource is used. We need to adapt them
to the case in which a task set is to be scheduled on a bounded
delay server. We will consider here only the EDF case.

When the application is locally scheduled with EDF, the only
modification needed to the algorithm presented in [23] is in the
schedulability test used to verify if the ceiling can be decreased.
Instead of the test used at line 2 of Procedure REDUCECEILING

in [23], we will use the test given by Corollary 1. Since this
is just a trivial modification, we do not include here a detailed
description of the algorithm, which can be found in [13] and
[23].

In the following section, we will provide an alternative and
efficient way to decrease the resource holding time of an appli-
cation, without requiring any additional computation.

C. Executing Global Critical Sections Without Local
Preemptions

In this section, we will formally show that even if applica-
tion was validated upon a dedicated VP of speed using
EDF SRP or any other policy, some critical sections may be ex-
ecuted without local preemptions under a BROE server.

Theorem 7: Given an application accessing a globally
shared resource can be scheduled upon a dedicated VP of
speed- , where each job completes at least time units prior
to its deadline: if and then

can be EDF-scheduled on a BROE server with parameters
, executing each critical section of with local pre-

emptions disabled.
Proof: The proof is by contradiction. Assume the an-

tecedent of the theorem holds, but the application misses
a deadline on a BROE server with parameters , when
executing a critical section of a global resource with local
preemptions disabled. For Theorem 5, is schedulable on a
partition with EDF SRP.

Let be the first missed deadline with nonpreemptive
locking, and the latest time-instant prior to at which

5We believe the resource holding time to be similar to the maximum critical
section execution time defined in [40].

there are no jobs with awaiting execution
(if there was no such instant). With nonpreemptive
locking, as with SRP, there is at most one blocking job over

(see [6]). The blocking job must have acquired the
lock before and have a deadline after . Let be the set
of jobs that have both release time and deadline in .
Over , the application executes only jobs in , or a
blocking job. Let and be, respectively, the time at which
the blocking job acquires and releases the lock on , when
EDF SRP is used as a local scheduling algorithm. We hereafter
prove that . Suppose, by contradiction, .
The total demand in is given by the contributions of
the jobs in , plus the remaining part of the blocking critical sec-
tion that has still to be executed at . The demand due to jobs
in is the same whether SRP or nonpreemptive locking is used.
Moreover, since with nonpreemptive locking a job cannot be in-
terfered with while holding a global lock, the contribution of the
blocking job in cannot be larger than with SRP. There-
fore, the total amount of execution requested in with
SRP is at least as large as with nonpreemptive locking. Since a
deadline is missed with nonpreemptive locking, a deadline will
be missed even with SRP, contradicting the hypothesis. Then,

.
When there is a blocking contribution in , it means

that the blocking job is still holding the lock on at time .
Therefore, with nonpreemptive locking, the blocking job is the
only one executing in . We now prove that no job with
deadline of is released in . Suppose that a job

is released in that interval. Since the blocking job is executing
nonpreemptively in is still awaiting execution at time

. Since is the first missed deadline, ’s deadline cannot
be . Moreover, for the definition of ’s deadline cannot
even be between and . Thus, ’s deadline must be later
than .

Let be the total amount of execution requested in
by jobs in , and let (resp.)

be the amount of execution received by the blocking job in
when nonpreemptive locking (resp. SRP) is used. Finally,

let be the amount of execution supplied to in
interval . Since a deadline is missed with nonpreemptive
blocking, the following relation holds:

(32)

Consider the EDF SRP schedule. The BROE server is never sus-
pended in (remember is the unlocking time when SRP

is used), and has at least one pending job throughout the
same interval. Rule (ix) of the BROE server guarantees that the
total execution needed by to release the global lock will
be granted with a delay of at most
time-units. Therefore, the execution supplied to in
is at least . Note that the execution supplied
to an application does not depend on the particular local sched-
uling algorithm, but only on the global scheduling policy. There-
fore, for both SRP and nonpreemptive locking,

. Equation (32) then becomes

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

216 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Using , it follows:

Since the only job of that is scheduled in is the
blocking job, . Then

Being , the total amount of execution requested
in by jobs in is

Since we assumed that when is scheduled on a dedicated
processor of speed , each job completes at least
time-units before its deadline, the total demand of jobs in
cannot be larger than the RHS of the above equation, reaching
a contradiction and proving the theorem.

We believe Theorem 7 represents a very interesting result,
since it allows improving the schedulability of the system both
locally and globally. Notice, if the above theorem is satisfied for
some and , then we may use instead of in
the admission control tests of Section III-E. This increases the
likelihood of being admitted because the amount could
block applications with is decreased. Moreover, it
allows using a very simple nonpreemptive locking protocol, de-
creasing the number of preemptions experienced by an applica-
tion while holding a lock, and avoiding the use of more complex
protocols for the access to shared resources.

VII. SHARING GLOBAL RESOURCES

One of the features of our open environment that distin-
guishes it from other work that also considers resource-sharing
is our approach towards the sharing of global resources across
applications.

As stated above, there are works [18] mandating that global
resources be accessed with local preemptions disabled. The ra-
tionale behind this approach is sound: by holding global re-
sources for the least possible amount of time, each application
minimizes the blocking interference to which it subjects other
applications. However, the downside of such nonpreemptive ex-
ecution is felt within each application—by requiring certain crit-
ical sections to execute nonpreemptively, it is more likely that
an application when evaluated in isolation upon its slower-speed
VP will be deemed infeasible. The server framework and anal-
ysis described in this paper allows for several possible execution
modes for critical sections. We now analyze when each mode
may be used.

More specifically, in extracting the interface for an applica-
tion that uses global resources, we can distinguish between
three different cases.

• If the application is feasible on its VP when it executes a
global resource nonpreemptively, then have it execute

nonpreemptively.
• If an application is infeasible on its VP of speed when

scheduled using EDF SRP for , it follows from the op-
timality of EDF SRP [6] that no (work-conserving) sched-
uling strategy can result in this application being feasible
upon a VP of the specified speed. Thus, by Theorem 5, no
application-level scheduler can guarantee deadlines will be

met for the application on any BROE server with parameter
.

• The interesting case is when neither of the two above holds:
the system is infeasible when executes nonpreemptively
but feasible when access to is arbitrated using the SRP.
In that case, the objective should be to devise a local sched-
uling algorithm for the application that retains feasibility
while minimizing the resource holding times. There are two
possibilities.

a) Let be the largest critical section of any job
of that accesses global resource . If

(in addition to the previously stated constraint
on the resource-hold time), then

may disable (local) preemptions when executing
global resource on its BROE server. In some cases,
it may be advantageous to reduce to increase
the chances that the constraint is
satisfied.

b) If but still holds,
may be executed using SRP. The resource-hold

time could potentially be reduced by using techniques
from [13], as discussed in Section VI.

VIII. RELATION TO EXISTING WORKS

We consider this paper to be a generalization of earlier (“first-
generation”) open environments (see, e.g., [11], [17], [21], [22],
[35], and [41]), in that our results are applicable to shared plat-
forms composed of serially reusable shared resources in addi-
tion to a preemptive processor. These projects assume that each
individual application is composed of periodic implicit-dead-
line (“Liu and Layland”) tasks that do not share resources (nei-
ther locally within each application nor globally across applica-
tions); however, the resource “supply” models considered turn
out to be alternative implementations of our scheduler (in the
absence of shared resources).

There are other works that instead consider the access to glob-
ally shared resources in simpler server-based environments. The
servers used in these environments do not allow for the hier-
archical execution of different applications, but are often lim-
ited to the execution of one single task per server. Among fixed
priority scheduled servers, Kuo and Li presented in [25] a re-
source sharing approach to be used with sporadic servers [43].
All global resources are handled by a single dedicated server
that has capacity equal to the sum of all critical sections lengths
and period equal to the GCD of the periods of the tasks ac-
cessing global resources. The drawback of this approach is that
it could require a large utilization to accommodate such a dedi-
cated server.

Among EDF-scheduled task systems, Ghazalie and Baker
present in [24] an overrun mechanism to be used together with
dynamic deferrable, sporadic and deadline exchange servers.
Caccamo and Sha propose in [16] a modification to the CBS

server [1] with a rule that allows locking a global critical
section only when the CBS server has enough capacity to serve
the whole critical section. Otherwise, the capacity is recharged
and the server deadline is postponed. Since the deadline could
be arbitrarily postponed by a task monopolizing the CPU
(deadline aging problem), other tasks sharing the same server
could potentially need to wait for an arbitrarily large amount of

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 217

time. Having “operative” deadline greater than the original ones
can therefore violate the bounded-delay property, rendering the
algorithm unsuitable for hierarchical open environments.

The Bandwidth Inheritance protocol (BWI) presented by
Lipari et al. in [30] is based on a Priority Inheritance approach.
A server holding a lock on a shared resource inherits the
bandwidth of each server blocked on the same resource. The
advantage of this protocol is that it does not require to know in
advance which shared resources is accessed by each task, since
it does not make use of the concept of “ceiling.” However,
knowing the worst-case critical section lengths is necessary to
compute the blocking due to shared resources for admission
control. The computation of the interference due to other
components is rather complex. Moreover, particular strategies
should be used for deadlock avoidance when designing an
application.

Feng presents in [21] two mechanisms for the access to shared
resources in a server-based environment. In the first one, there
is one server for each globally shared resource; whenever a job
of an application requires access to a global resource, the job
is executed [in first-in–first-out (FIFO) order] in the server as-
sociated with that resource, while the application can continue
executing other jobs in the initial server. In the second approach,
called “partition coalition,” a further mechanism is added: each
task that may access a global resource is assigned a share of
bandwidth (subpartition); every time a task blocks other tasks
on a global resource, it inherits the bandwidth assigned to the
blocked tasks, together with the (potentially null) bandwidth of
the server associated to the global resource. Global critical sec-
tions are therefore executed in a “coalition” of partitions. Both
approaches have some analogies with the “multireserve PCP”
presented by de Niz et al. in [19], where instead of serving the
blocked tasks in FIFO order, a priority-based approach with re-
source ceilings is used to limit the blocking times. Also, these
works seem more suited for servers with one single task than for
a hierarchical environment. Moreover, the schedulability anal-
ysis of such systems seems rather complex if compared with the
admission control algorithms presented in Section III-E.

Among works that are closer in scope and ambition to this
work, there is the solution proposed by Davis and Burns in
[18], the work developed in Mälardalen [9], [10], [40], and the
FIRST Scheduling Framework (FSF) [2]. Like these projects,
our approach models each individual application as a collec-
tion of sporadic tasks which may share resources. One major
difference between our work and most of these related works
concerns the case in which the budget is exhausted while an ap-
plication is still holding a global lock. The works in [2], [10],
[18], and [40] introduced an overrun mechanism that continues
executing the application until the lock is released, even if the
budget is exhausted. The drawback of this approach is that in
the scheduling analysis it is necessary to account for the largest
overrun of each task/server, significantly reducing the available
schedulable bandwidth.6 We instead decided to start executing a
global critical section only if the remained budget is sufficiently
large to execute the whole critical section. Otherwise, we delay

6To reduce the overrun, Davis and Burns propose in [18] to execute each
global critical section with local preemptions disabled. However, this imposes
locally a larger interference on high priority jobs that do not access any global
resource.

the acquisition of the global lock until the budget can be safely
recharged.7 We showed that in our framework this delay does
not cause schedulability penalties.

Another difference between our work and the results pre-
sented in [18] concerns modularity. We have adopted an ap-
proach wherein each application is evaluated in isolation, and
integration of the applications into the open environment is done
based upon only the (relatively simple) interfaces of the appli-
cations. By contrast, [18] presents a monolithic approach to the
entire system, with top-level schedulability formulas that cite
parameters of individual tasks from different applications. We
expect that a monolithic approach is more accurate but does not
scale, and is not really in keeping with the spirit of open envi-
ronment design.

As a final remark, it is possible to integrate our server with
some previously proposed reclaiming mechanism to exploit the
unused bandwidth. A simple rule can be easily added by setting
to Inactive the state of all servers when the processor is idle.
Moreover, the reclaiming mechanism used by GRUB in [27] may
be implemented by updating the virtual time of an executing
application at a rate , instead than at a rate ,
where represents the sum of the of each admitted
application that is either in Contending, Noncontending, or
Suspended state, i.e., excluding all inactive applications. We be-
lieve that other mechanisms, like the ones used in [14] and [15],
can be adapted to the presented framework. We leave these prob-
lems for future works.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a design for an open environ-
ment that allows for multiple independently developed and vali-
dated applications to be multiprogrammed on to a single shared
platform. We believe that our design contains many significant
innovations.

• We have defined a clean interface between applications and
the environment, which encapsulates the important infor-
mation while abstracting away unimportant details.

• The simplicity of the interface allows for efficient runtime
admission control, and helps avoid combinatorial explo-
sion as the number of applications increases.

• We have addressed the issue of interapplication resource
sharing in great detail. moving beyond the ad hoc strategy
of always executing shared global resources nonpreemp-
tively, we have instead formalized the desired property
of such resource-sharing strategies as minimizing resource
holding times.

• We have studied a variety of strategies for performing ar-
bitration for access to shared global resources within in-
dividual applications such that resource holding times are
indeed minimized.

For the sake of concreteness, we have analyzed the local schedu-
lability of individual applications that are executed upon our
open environment using EDF and some protocol for arbitrating
access to shared resources. This is somewhat constraining—ide-
ally, we would like to be able to have each application scheduled
using any local scheduling algorithm.8

7A similar design choice has been taken for the SIRAP protocol described in
[9].

8Shin and Lee [41] refer to this property as universality.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

218 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Let us first address the issue of the task models that may be
used in our approach. The results obtained in this paper have
assumed that each application is composed of a collection of
jobs that share resources. Therefore, the results contained in the
paper extend in a straightforward manner to the situation where
individual applications are represented using more general task
models such as the multiframe [33], [34], generalized multi-
frame [7], or recurring [4], [5] task models—in essence, any
formal model satisfying the task independence assumptions [7]
may be used.

We conjecture that our framework can also handle applica-
tions modeled using task models not satisfying the task indepen-
dence assumptions, provided the resource sharing mechanism
used is independent of the absolute deadlines of the jobs, and
only depends upon the relative priorities of the jobs according
to EDF. We believe that our approach is general enough to suc-
cessfully schedule such applications that have been validated
by hand on a slower processor; we are currently working on
proving this conjecture.

Next, let us consider local scheduling algorithms. We expect
that analysis similar to ours could be conducted if a local appli-
cation were to instead use (say) the deadline-monotonic sched-
uling algorithm [26], [31] with sporadic tasks, or some other
fixed priority assignment with some more general task model
(again, satisfying the task independence assumption). As dis-
cussed in Section IV-C, prior work on scheduling on resource
partitions has assumed the local tasks do not share resources;
we believe these results could be easily extended to include local
resource sharing and used within our server framework.

A final note concerning generalizations. Our approach may
also be applied to applications which are scheduled using table-
driven scheduling, in which the entire sequence of jobs to be
executed is precomputed and stored in a lookup table prior to
runtime. Local scheduling for such systems reduces to dispatch
based on table-lookup: such applications are also successfully
scheduled by our open environment.

ACKNOWLEDGMENT

We are extremely grateful to the anonymous reviewers of both
the conference and journal versions of this paper for their help
in improving the quality of the paper.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proc. Real-Time Syst. Symp., Madrid, Spain,
Dec. 1998, pp. 3–13.

[2] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M. Drake,
G. Fohler, P. Gai, M. G. Harbour, G. Guidi, J. Gutiérrez, T. Lennvall,
G. Lipari, J. Martínez, J. Medina, J. Palencia, and M. Trimarchi,
“FSF: A real-time scheduling architecture framework,” in Proc. IEEE
Real-Time Technol. Appl. Symp. (RTAS), Los Alamitos, CA, 2006, pp.
113–124.

[3] T. P. Baker, “Stack-based scheduling of real-time processes,” Real-
Time Systems: Int. J. Time-Critical Comput., vol. 3, pp. 67–99, 1991.

[4] S. Baruah, “A general model for recurring real-time tasks,” in Proc.
Real-Time Syst. Symp., Madrid, Spain, Dec. 1998, pp. 114–122.

[5] S. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems: Int. J. Time-Critical Comput., vol. 24,
no. 1, pp. 99–128, 2003.

[6] S. Baruah, “Resource sharing in EDF-scheduled systems: A closer
look,” in Proc. IEEE Real-Time Syst. Symp., Rio de Janeiro, Dec.
2006, pp. 379–387.

[7] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems: Int. J. Time-Critical Comput., vol. 17, no.
1, pp. 5–22, Jul. 1999.

[8] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. 11th Real-
Time Syst. Symp., Orlando, FL, 1990, pp. 182–190.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchroniza-
tion protocol for hierarchical resource sharing in real-time open sys-
tems,” in Proc. 7th ACM and IEEE Int. Conf. Embedded Softw.: EM-
SOFT’07, Salzburg, Austria, 2007.

[10] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling of semi-inde-
pendent real-time components: Overrun methods and resource holding
times,” in Proc. 13th IEEE Int. Conf. Emerging Technol. Factory
Autom. (ETFA’08), Hamburg, Germany, Sep. 2008, pp. 575–582.

[11] G. Bernat and A. Burns, “Multiple servers and capacity sharing for
implementing flexible scheduling,” Real-Time Syst., vol. 22, pp. 49–75,
2002.

[12] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and
resource hold times,” in Proc. Int. Workshop Parallel Distribut. Real-
Time Syst. (IPDPS), Long Beach, CA, Mar. 2007, pp. 1–8.

[13] M. Bertogna, N. Fisher, and S. Baruah, “Resource holding times: Com-
putation and optimization,” Real-Time Syst., vol. 41, no. 2, pp. 87–117,
Feb. 2009.

[14] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for overrun
control,” in Proc. 21th IEEE RTSS, Orlando, FL, 2000, pp. 295–304.

[15] M. Caccamo, G. Buttazzo, and D. Thomas, “Efficient reclaiming in
reservation-based real-time systems with variable execution times,”
IEEE Trans. Comput., vol. 54, no. 2, pp. 198–213, Feb. 2005.

[16] M. Caccamo and L. Sha, “Aperiodic servers with resource constraints,”
in Proc. IEEE Real-Time Syst. Symp., London, U.K., Dec. 2001, pp.
161–170.

[17] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in Proc. IEEE Real-Time Syst. Symp., Miami, FL, 2005,
pp. 389–398.

[18] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed pri-
ority pre-emptive systems,” in Proc. IEEE Real-Time Syst. Symp., Rio
de Janeiro, Brazil, 2006, pp. 257–268.

[19] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing
in reservation-based systems,” in Proc. IEEE Real-Time Syst. Symp.,
London, U.K., Dec. 2001, pp. 171–180.

[20] Z. Deng and J. Liu, “Scheduling real-time applications in an open en-
vironment,” in Proc. 18th Real-Time Syst. Symp., San Francisco, CA,
Dec. 1997, pp. 308–319.

[21] X. Feng, “Design of real-time virtual resource architecture for
large-scale embedded systems,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. Texas at Austin, Austin, TX, 2004.

[22] X. A. Feng and A. Mok, “A model of hierarchical real-time virtual
resources,” in Proc. IEEE Real-Time Syst. Symp., 2002, pp. 26–35.

[23] N. Fisher, M. Bertogna, and S. Baruah, “Resource-locking durations
in EDF-scheduled systems,” in Proc. 13th IEEE Real-Time and Em-
bedded Technol. Appl. Symp. (RTAS), Bellevue, WA, 2007, pp. 91–100.

[24] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline sched-
uling environment,” Real-Time Systems: Int. J. Time-Critical Comput.,
vol. 9, pp. 31–67, 1995.

[25] T.-W. Kuo and C.-H. Li, “A fixed priority driven open environment for
real-time applications,” in Proc. IEEE Real-Time Syst. Symp., Madrid,
Spain, Dec. 1999, p. 256.

[26] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-pri-
ority scheduling of periodic, real-time tasks,” Perform. Eval., vol. 2,
pp. 237–250, 1982.

[27] G. Lipari and S. Baruah, “Greedy reclaimation of unused bandwidth
in constant-bandwidth servers,” in Proc. EuroMicro Conf. Real-Time
Syst., Stockholm, Sweden, Jun. 2000, pp. 193–200.

[28] G. Lipari and E. Bini, “Resource partitioning among real-time appli-
cations,” in Proc. EuroMicro Conf. Real-Time Syst., Porto, Portugal,
2003, pp. 151–160.

[29] G. Lipari and G. Buttazzo, “Schedulability analysis of periodic and
aperiodic tasks with resource constraints,” J. Syst. Arch., vol. 46, no. 4,
pp. 327–338, 2000.

[30] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in reser-
vation-based real-time systems,” IEEE Trans. Comput., vol. 53, no. 12,
pp. 1591–1601, 2004.

[31] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[32] A. K. Mok, “Fundamental design problems of distributed systems for
the hard-real-time environment,” Ph.D. dissertation, Lab. Comput. Sci.,
Massachusetts Institute of Technology, Cambridge, MA, 1983, Avail-
able as Tech. Rep. MIT/LCS/TR-297.

[33] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” in
Proc. 17th Real-Time Syst. Symp., Washington, DC, 1996, p. 22.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

BERTOGNA et al.: RESOURCE-SHARING SERVERS FOR OPEN ENVIRONMENTS 219

[34] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Trans. Softw. Eng., vol. 23, no. 10, pp. 635–645, Oct. 1997.

[35] A. K. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Proc. 7th IEEE Real-Time Technol. Appl. Symp.
(RTAS’01), May 2001, pp. 75–84, IEEE.

[36] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Systems: Int. J. Time-Critical Comput.,
vol. 30, no. 1–2, pp. 105–128, May 2005.

[37] R. Rajkumar, Synchronization in Real-Time Systems—A Priority Inher-
itance Approach. Boston, MA: Kluwer, 1991.

[38] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,”
Readings in Multimedia Computing and Networking, pp. 476–490,
2001.

[39] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[40] I. Shin, M. Behnam, T. Nolte, and M. Nolin, “Synthesis of optimal
interfaces for hierarchical scheduling with resources,” in Proc. 29th
IEEE Int. Real-Time Syst. Symp. (RTSS’08), Barcelona, Spain, Dec.
2008, pp. 209–220.

[41] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. IEEE Real-Time Syst. Symp., 2003, pp. 2–13.

[42] I. Shin and I. Lee, “Compositional real-time scheduling framework,”
in Proc. IEEE Real-Time Syst. Symp., 2004, pp. 57–67.

[43] B. Sprunt, L. Sha, and J. P. Lehoczky, “Scheduling sporadic and ape-
riodic events in a hard real-time system,” Real-Time Systems: Int. J.
Time-Critical Comput., vol. 1, no. 1, pp. –, Jun. 1989, ESD-TR-89-19.

Marko Bertogna graduated (summa cum laude) in
telecommunications engineering from the University
of Bologna, Bologna, Italy, in 2002. He received the
Ph.D. degree in computer science from Scuola Supe-
riore Sant’Anna, Pisa, Italy, in 2008.

He is an Assistant Professor at the Scuola Su-
periore Sant’Anna. His research interests include
scheduling and schedulability analysis of real-time
multiprocessor systems, protocols for the exclusive
access to shared resources, hierarchical systems, and
reconfigurable devices.

Prof. Bertogna received the 2005 IEEE/Euromicro Conference on Real-Time
Systems Best Paper Award.

Nathan Fisher received the B.S. degree from the
University of Minnesota, Minneapolis, in 1999, the
M.S. degree from Columbia University, New York,
in 2002, and the Ph.D. degree from the University
of North Carolina at Chapel Hill in 2007, all in
computer science.

He is an Assistant Professor with the Department
of Computer Science, Wayne State University. His
research interests are in real-time and embedded
computer systems, parallel and distributed algo-
rithms, resource allocation, and approximation

algorithms. His current research focus is on multiprocessor scheduling theory
and composability of real-time applications.

Sanjoy Baruah received the Ph.D. degree from the
University of Texas at Austin in 1993.

He is a Professor with the Department of Com-
puter Science, University of North Carolina at
Chapel Hill. His research and teaching interests are
in scheduling theory, real-time and safety-critical
system design, and resource-allocation and sharing
in distributed computing environments.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on November 6, 2009 at 10:30 from IEEE Xplore. Restrictions apply.

