
Comparative evaluation of limited preemptive methods

Gang Yao, Giorgio Buttazzo and Marko Bertogna

Scuola Superiore Sant’Anna, Pisa, Italy,{g.yao, g.buttazzo, m.bertogna}@sssup.it

Abstract

Schedulability analysis of real-time systems requires the
knowledge of the worst-case execution time (WCET) of
each computational activity. A precise estimation of such
a task parameter is quite difficult to achieve, because
execution times depend on many factors, including the task
structure, the system architecture details, operating system
features and so on.

While some of these features are not under our control,
selecting a proper scheduling algorithm can reduce the
runtime overhead and make the WCETs smaller and more
predictable. In particular, since task execution times can
be significantly affected by preemptions, a number of
scheduling methods have been proposed in the real-time
literature to limit preemption during task execution. In
this paper, we provide a comprehensive overview of the
possible scheduling approaches that can be used to contain
preemptions and present a comparative study aimed at
evaluating their impact on task execution times.

I. Introduction

Preemption is a key factor in real-time scheduling algo-
rithms, since it allows the operating system to immediately
allocate the processor to incoming tasks that have higher
priority to complete. Under dynamic priority scheduling
like Earliest Deadline First (EDF), higher priority task
corresponds to higher urgency due to its earlier deadline,
while under fixed priority, a higher priority task may
preempt a more urgent but lower priority task. In fully
preemptive systems, the running task can be interrupted
at any time by another task with higher priority, and be
resumed to continue later. In other systems, preemption
may be disabled for certain intervals of time during the
execution of critical operations (e.g., interrupt servicerou-
tines, critical sections, etc.). There are also some situations
in which preemption is completely forbidden to avoid

This work has been partially supported by the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement
no. 216008.

unpredictable interference among tasks and consequently,
a higher degree of predictability is achieved.

Non-preemptive scheduling can achieve a more pre-
dictable execution behavior since the task instance will
continue until completion once gets started, however, non-
preemptive regions of code introduce additional blocking
delays that may degrade the effective system utilization.
Indeed, when the preemption cost is ignored in the analy-
sis, as the assumption commonly adopted in many research
works, fully preemptive scheduling is more efficient com-
pared to the non-preemptive case in terms of processor
utilization. In practice, however, arbitrary preemptions
cause significant runtime overhead and high fluctuations
in task execution times.

Whenever a preemption takes place, different sources
of overhead must be taken into account. First of all, the
current task is suspended and inserted in the ready queue,
then the scheduler makes a context switch and the new
task is dispatched. The time needed for these operations is
referred to ascontext switch costand is denoted byσ. This
cost can easily be taken into account in the schedulability
analysis by increasing the WCET of the preempting task
by an amount equal toσ.

When the preempted task resumes its execution, there
are other indirect costs to be considered, related to cache
misses, pipeline refills, bus contentions and so on. In fact,
an extra overhead is necessary to refill the pipeline of the
pre-fetch mechanism, since preemption typically destroys
program locality of memory references. An additional
overhead is charged to the resumed task to reload the cache
lines evicted by the preempting task. Such a reloading
also generates additional accesses to the RAM, therefore
possibly increasing the number of bus conflicts caused by
other peripherals. The cumulative execution overhead due
to the combination of these effects is referred to asar-
chitecture related costand is denoted byγ. Unfortunately,
this cost is with high variance and depends on the specific
point in the task code when preemption takes place [1],
[10], [15]. Figure 1 illustrates a simple schedule result
where the different sources of overhead explained above
are highlighted.



τ1

τ2

τ3

σ

σ

γ

γ

Fig. 1. A sample preemptive schedule with
different sources of overhead.
When preemption is allowed at any time during task

execution (as in fully preemptive systems),γ is typically
evaluated in the worst-case scenario, which provides a safe,
but pessimistic, bound on the preemption cost. As showed
by Bui et al. [6], the task execution time increment due
to cache interference can be as large as33% for PowerPC
MPC7410 with 2 MByte two-way associative L2 cache.

Finally, the total increase of the WCET of taskτi is also
a function of the total number of preemptions experienced
by τi, which in turn depends on the task set parameters, on
the activation pattern of higher priority tasks, and on the
specific scheduling algorithm. Such a circular dependency
of WCET and number of preemptions makes the problem
not easy to be solved. Some methods for estimating the
number of preemptions have been proposed in [9], [23],
but they are restricted to the fully preemptive case.

It is worth pointing out that all the presented causes of
overhead are closely related and should be considered in an
systematic manner. Due to page limits, however, this paper
focuses on scheduling methods for controlling the number
and the position of preemptions. We analyze different
limited preemptive scheduling methods, and investigate
how the preemption-related problems can be dealt with
from the scheduling point of view.

The rest of the paper is organized as follows: Section
II introduces some terminologies and presents the consid-
ered scheduling methods; Section III assesses them and
discusses their pros and cons; Section IV illustrates some
simulation results, finally, Section V states our conclusions
and future work.

II. Limited preemption methods

We consider a set ofn periodic and sporadic real-
time tasks to be scheduled on a single processor by a
fixed priority algorithm. Each taskτi is characterized by a
worst-case execution time (WCET)Ci, a relative deadline
Di, and a period (or minimum inter-arrival time)Ti. A
constrained deadline model is adopted here, soDi is
assumed to be less than or equal toTi. For scheduling
purposes, each task is assigned a fixed priorityPi, used to

select the running task among those tasks ready to execute.
A higher value ofPi corresponds to higher priority.

Notice that task activation times are not known a priori
and the actual execution time of a task can be less than
or equal toCi. Tasks are indexed by decreasing priority,
i.e.,∀i | 1 ≤ i < n : Pi > Pi+1. For convenience,hp(i) is
used to represent the subset of tasks with priority higher
thanPi.

Preemption is considered a pre-requisite to meet tim-
ing requirement in real-time system design, however, in
most cases a fully preemptive system will produce many
unnecessary preemptions. This phenomenon has been ob-
served by Jeffay [12], where he conjectured that“if
preemption is required for feasibility, it will be limited
to a few tasks”. Following this reasoning, several limited
preemptive scheduling algorithms have been proposed and
studied. Clearly, limited preemptive scheduling becomes
a key problem when designing reliable, dependable, and
predictable real-time embedded systems, and it follows
the research trends in cyber physical systems that inte-
grate both cyber and physical components. The following
scheduling algorithms, which are variations of the classical
Fixed Priority Scheduling algorithm [16], are considered
in this paper and the performance of different schedulers
are evaluated in a comparative way.

• Fully Preemptive Scheduling (FPS). It corresponds to
the classical fixed priority algorithm where each task
can be preempted anytime and anywhere inside its
code.

• Non-Preemptive Scheduling (NPS). It corresponds
to the fixed priority algorithm where preemption is
disabled. In this way, each task is selected based on its
priority, and it runs until completion once gets started.

• Preemption Threshold Scheduling (PTS) [20]. Each
task τi is assigned a nominal priority levelPi and
a preemption thresholdπi, which is higher than or
equal toPi. Thus,τi can be preempted byτk only if
Pk > πi.

• Floating Non-Preemptive Regions (f-NPR). In this
case, each taskτi can disable preemption for a time
interval of at mostQi units of time. When a higher
priority task arrives, the running task can switch to
non-preemption mode forQi units of time, before
the preemption is triggered. Since the running task
can switch to non-preemptive mode at any time
depending on the arrival of high priority tasks, the
non-preemptive regions are assumed to befloating
inside the task code.

• Fixed Preemption Points (FPP) [7]. Preemption can
only take place in pre-defined positions, which are
called preemption points. Thus, each task is divided
into a set of fixed non-preemptive regions, among
which the longest and the last ones play a crucial



role in the schedulability analysis. We denote these
two lengths asqmax andqlast, respectively.

The above limited preemptive algorithms also differ
in the way they can be implemented. Floating Non-
Preemptive Regions can be realized by setting a timer to
enforce the maximum interval in which preemptions are
disabled. On the other hand, in FPP, preemption points
are statically inserted inside the application code as func-
tion calls to the scheduler. This simplifies the scheduler
implementation, since no timer is needed, but requires a
user intervention to explicitly specify where to insert each
preemption point.

Techniques to estimate the cache-related preemption
delays have been proposed in [11], [14]. However, most
research results considered only a single task in the analy-
sis. A method to incorporate the effect of instruction cache
on response time analysis has been proposed in [13]. Only
recently, some more general frameworks [17], [19] have
been proposed to deal with multi-task real-time systems.
Finally, a partial preemptive model [18] has been proposed
to consider the preemption cost and limited preemption.
However, each task is limited to have only one non-
preemptive region.

III. Assessment of the approaches
Although several different methods for reducing the

number of preemptions have been proposed and ana-
lyzed, a comparative evaluation of these approaches is
still missing. In this section, we discuss advantages and
disadvantages of these various solutions and assess them
in terms of effectiveness, implementation complexity, and
impact on schedulability.

A. Non-preemptive scheduling (NPS)

The simplest way to limit the overhead due to preemp-
tion is to execute each task in a non-preemptive fashion.
In this way, each task, once started, will continue until
completion without being preempted. As a consequence,
the total number of preemptions in the system will be zero.
One major drawback of NPS is that the utilization loss
is relatively high and high priority tasks experience large
blocking delays from lower priority tasks.

Indeed, in non-preemptive systems it is easy to see that
there is no least upper bound on the processor utilization
below which the schedulability of any task set can be
guaranteed. This can easily be shown by considering a set
of two periodic tasks,τ1 and τ2, with priorities P1 > P2

and utilization Ui = ε, arbitrarily small. If C2 > T1,
C1 = εT1, andT2 = C2/ε, the task set is unschedulable,
although having an arbitrarily small utilization.

A fair assessment of the non-preemptive approach in
comparison with the fully preemptive scheduling (FPS) can

τ1

τ2

τ3

(a) τ2 has WCET.

τ1

τ2

τ3

(b) τ2 has less execution time.

Fig. 2. Number of preemptions occur by τ3.
only be done when the preemption overhead is taken into
account. However, a precise estimation of the preemption
cost under FPS is not trivial. In fact, since high priority
tasks may arrive at any time, the preemption cost must
be estimated in the worst-case condition, leading to pes-
simistic results.

The total number of preemptionsνi experienced by a
taskτi is also difficult to compute off line. One proposed
method is to consider all the activations of higher priority
tasks occurring within the response timeRi of taskτi, that
is:

νi =
∑

τk∈hp(i)

⌈

Ri

Tk

⌉

.

However, this approach leads to very pessimistic results.
Consider, for example, the task set depicted in Figure 2,
where gray areas represent task execution and black ones
represent preemption cost. As shown in Figure 2(a), the
first two instances ofτ1 do not preemptτ3. However,
Figure 2(b) illustrates that, ifτ2 completes earlier than its
WCET, τ3 suffers one more preemption.

Another factor which makes estimating the number of
preemptions difficult is that each preemption introduces
an extra execution time (γ) on the preempted task, as
discussed in Section I. The accumulation of such overheads
leads to an increment of the task remaining execution time,
so possibly increasing the number of potential preemp-
tions. Such a circular dependency between WCET and



number of preemptions makes the overhead very difficult
to be accounted in the analysis of fully preemptive systems.

B. Preemption threshold scheduling (PTS)

Preemption threshold scheduling (PTS) can be consid-
ered as a trade-off between FPS and NPS. Indeed, if each
threshold priority is set equal to the task nominal priority
(∀i | 1 ≤ i ≤ n : πi = Pi), the scheduler behaves
the same as FPS; whereas, if all thresholds are set to
the maximum priority, the scheduler behaves the same as
NPS. In addition, Wang and Saksena [20] showed that,
by appropriately setting the thresholds, PTS can achieve a
lower utilization loss compared to both FPS and NPS, and
consequently, a higher utilization efficiency.

When counting the potential preemptions for taskτi,
only tasks with priority higher thanπi must be taken into
account. However, when considering the exact number of
preemptions for one specific task, the situation illustrated
in Figure 2 may still occur under PTS. The only difference
between PTS and FPS is that, under PTS, there are
less tasks that can preempt the current taskτi, i.e., the
potential preempting task subset changes fromhp(i) to
{τk | Pk > πi}. However, the total number of preemptions
for a specific task is still difficult to estimate.

Moreover, under PTS, a preemption takes place imme-
diately on the arrival time of a higher priority task, if
the preemption is allowed. Hence, if arrival times are not
known a priori, preemptions can occur at any position of
the task code. As already pointed out, the arbitrary position
of a preemption within the task code requires considering
the worst-case scenario in the evaluation of the preemption
cost, thus leading to pessimistic analysis.

C. Floating non-preemptive regions (f-
NPR)

An alternative approach to limit the number of preemp-
tions occurring on a taskτi is to disable preemption for
a time interval at most longQi. Since the running task
can switch to non-preemptive mode at any time, the non-
preemptive regions are assumed to befloating inside the
task code, meaning that their start time is unknown.

The maximum lengthQi that τi can execute in non-
preemptive mode to preserve feasibility has been computed
both under EDF [2] and fixed priority [21]. After the value
Q is computed off line, the run-time scheduling policy is
working in the following way: when a task instance is
selected to start by the global scheduler, it executes in
regular mode. Suppose a new task instance with higher
priority arrives, the current task will not surrender the
processor immediately; instead, it will switch to non-
preemptive mode and continue for extraQi units of time,

τ1

τ2

τ3

Q3Q3

Fig. 3. A simple task set scheduled by limited
preemption with floating NPR.

or the remaining execution time of the current instance,
whichever is shorter. Figure 3 illustrates a sample task
set scheduled under f-NPR, where the dashed regions
represent the sections of code executed in non-preemptive
mode. Notice that the activation ofτ2 does not preemptτ3

immediately. Instead,τ3 switches to non-preemptive mode
and continues execution forQ3 units of time. When the
first instance ofτ1 arrives, τ3 is still executing in non-
preemptive mode, thus preemption is deferred untilτ3

finishes this non-preemptive region.
It has also been shown that, given a preemptively

feasible task set, the computed lengthQi is always non-
negative. Therefore, a preemptively feasible task set is still
feasible under f-NPR, provided that the length of each
non-preemptive region does not exceed the valueQi. As
there are some unfeasible task sets under fixed priority FPS
and NPS, which can be successfully scheduled by f-NPR,
we can conclude that f-NPR dominates FPS. This can be
shown by considering the flowing example.
Example 1. Consider the task system composed of two
sporadic tasks{τ1 = {2, 4}, τ2 = {3, 6}}, where the
first number is the task WCET and the second number
is the task minimal inter-arrival time and the relative
deadline. Suppose tasks are assigned fix priorities andτ1

has the higher priority. It can be easily verified that this
task set is unfeasible under fixed priority FPS and NPS
scheduling. However, by settingQ2 equal to2− ε, where
ε is an arbitrarily small positive value, the task set becomes
feasible under f-NPR.

Notice that, once a taskτi starts executing, it will
continue for at leastQi units of time, unless it completes
earlier; hence, the preemption may take place at any place
in the task code, except the firstQi units of time. Consider
the example task set in Figure 3, the preemption occurs
whenτ1 (or τ2) arrives afterτ3 has already started, other-
wise τ1 (or τ2) will start beforeτ3, hence no preemption
will happen. When higher priority task arrives afterτ3 gets
started,τ3 will continue for Q3 units of time before the
preemption. For this reason, f-NPR slightly reduces the



possible preemption positions compared to PTS, where
preemptions can occur anywhere in the code.

Under f-NPR, the maximum number of preemptions
that τi can experience is upper bounded bydCi/Qie − 1.
It is worth pointing out that this estimation is independent
of the number of tasks in the system, which might be
rather large in some practical systems. As showed in [21],
under fixed priority, the average value ofQi/Ci is usually
greater than 0.5 for a ten-tasks system even under high
system utilization (90%),1 thus this method provides a
good solution for estimating the number of preemptions.

Under f-NPR, the circular dependency between the
WCET ofτi and the number of preemptionsνi experienced
by τi can be treated using the following recurrent relation:















ν0
i =

⌈

Ci

Qi

⌉

− 1

νs
i =

⌈

Ci+γν
s−1

i

Qi

⌉

− 1

Where the iteration process converges whenνs
i = νs−1

i

and νi is the worst-case estimation. Notice the valueQi

is calculated fromhp(i), hence, it is available if the
computation is performed in decreasing priority order.

D. Limited preemption with Fixed Pre-
emption Points (FPP)

τ1

τ2

τ3

qlastqmax

Fig. 4. A simple task set scheduled by FPP.

Enabling preemption to occur only at predefined po-
sitions in the task code allows achieving higher pre-
dictability. Indeed, the preemption points inside each task
can be properly selected at design time to reduce the
architecture related cost as much as possible. A sample
task set scheduled by FPP is given in Figure 4. Taskτ3 is
divided into three NPRs, and preemptions can occur only
at the NPR boundaries. Notice that the third instance ofτ1

arrives during the execution ofτ3’s final chunk, thus the
preemption is avoided.

1In [21], all results are derived ignoring preemption cost.

It is worth observing that the f-NPR method is more
general than FPP, since f-NPR allows NPRs to be any-
where in the task code. In other words, the valueQi,
which is computed under f-NPR model in Section III-C,
can still be used as the maximum length of NPRs under
FPP model, without violating the schedulability of the task
set. However, f-NPR leads to more pessimistic analysis,
because the architecture related cost must be considered in
the worst-case scenario, which becomes unnecessary under
FPP.

tA B C

τi

Qi

Fig. 5. A simple task program represented by
control flow graph.

The key difference between f-NPR and FPP model lies
in the selection of preemption points: under f-NPR, the
points are dynamically decided at run time, according to
the activation of higher priority tasks, while under FPP,
the possible preemption points are statically inserted in the
task code at the system design stage. Figure 5 illustrates
a simple task program, which is represented as a control
flow graph. The edges represent the possible control flows,
and each box represents a basic block (sequences of in-
structions) with the length meaning the estimated execution
time of this block. Under FPP model, since the preemption
points are already specified (as the down arrows above the
blocks), preemptions will be postponed to the next point
in the current program path. In the figure, if high priority
task arrives at position A, under FPP model the preemption
will happen at the next down arrow position, while under
f-NPR model, it will happen after the timer of scheduler
countsQi units of time, that is, at position B if the current
task follows the lower branch, or position C otherwise.

Another difference between f-NPR and FPP is given
by the length of the final execution chunk. As showed
in Figure 3, under f-NPR the final preemption onτ3 can
be very close to the task end, depending on the arrival
time of high priority tasks. On the other hand, under FPP,
the final chunk has a fixed lengthqlast (as in Figure 4).
A long final chunk decreases the interference from higher
priority tasks, possibly reducing the task response time. As
a consequence, the task can tolerate more blocking from
lower priority tasks. Therefore, we conjecture that under
FPP tasks can have longer NPRs than under f-NPR.

When preemption points are defined for each task, the



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
ge

 N
um

be
r 

of
 p

re
em

pt
io

ns

 

 
FPS
PTS
FPP
f−NPR

(a) Number of tasks:n=6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
ge

 N
um

be
r 

of
 p

re
em

pt
io

ns

 

 
FPS
PTS
FPP
f−NPR

(b) Number of tasks:n=12

Fig. 6. Average number of preemptions with different number of tasks.
task set schedulability under FPP can be verified through
response time analysis [5]. However, this algorithm needs
to check multiple instances within a certain time interval
and thus has a high computational complexity. Burns and
Wellings also investigated this problem in their latest book
[8], showing that the feasibility test may be reduced to the
first job of each task if the worst-case response time of each
task is no larger than its period. We [22] independently
investigated this topic and formally proved that under
which conditions the schedulability test can be simplified
to the first job of each task.

The FPP method can provide better timing predictability
in the system design. Suppose the preemption cost at
each program point is known from some timing analysis
methods, the designers can select the possible preemption
points by taking into account both the system feasibility
and predictability. One preliminary result is presented
in [3] to select the least number of points, under the
assumption of fixed preemption cost.

Under FPP the maximum number of preemptions is
easy to compute and is equal to the number of preemption
points in the code. Also, since preemptions can only take
place at some pre-defined positions, the architecture related
cost can be better estimated. Hence, a feasible task set
under f-NPR is also feasible under FPP, meaning that FPP
can achieve higher utilization level.

IV. Simulation results

A set of simulations with randomly generated task sets
have been performed to better evaluate the effectiveness of
the considered algorithms. Unless otherwise stated, each
simulation run was performed on a set ofn tasks with
total utilizationU varying from 0.5 to 0.95 with step 0.05.
Individual utilizations Ui was uniformly distributed in

[0,1], using the UUniFast algorithm [4]. Each computation
time Ci was generated as a random integer uniformly
distributed in [10, 50], and thenTi was computed as
Ti = Ci/Ui. The relative deadlineDi was generated as
a random integer in the range [Ci + 0.8 · (Ti − Ci), Ti].
The total simulation time was set to 1 million units of time.
For each point in the graph, the result was computed by
taking the average over 1000 runs.

In the first simulation the number of preemptions pro-
duced by each approach was monitored and reported in
Figure 6. The number of tasksn was set to 6 and 12,
respectively. We restricted to preemptive feasible task sets
and ignored the preemption cost as in [20], [21]. Under
PTS, the algorithm proposed by Wang and Saksena [20] to
find the maximum priority threshold was used to minimize
the number of preemptions. Under f-NPR and FPP, the
longest non-preemptive region was computed according
to the method presented in [21], and for FPP case, the
preemption points were inserted from the end of task code
to the beginning.

As expected, FPS generates the largest number of
preemptions, while f-NPR and FPP are both able to achieve
a higher reduction. PTS has an intermediate behavior.
Notice f-NPR can reduce slightly more preemptions than
FPP since on average, each preemption is deferred more
time than FPP (please refer to Figure 5), however, we
have to consider that FPP can achieve a lower and more
predictable preemption cost, since preemption points can
be suitably decided off line with this purpose. As showed
in the figure, FPS produces similar number of preemptions
when the number of tasks increases, while all other three
methods can reduce the preemptions number to a even
higher degree. This is because each task will have smaller
individual Ui, thus can suffer more blocking from lower
priority tasks.



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Utilization

R
at

io
 o

f F
ea

si
bl

e 
T

as
k 

S
et

s

 

 

α = 0 (FPS)

α = 1 (NPS)

α = 0.2

α = 0.4

α = 0.6

α = 0.8

(a) Preemption cost:γ = 3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Utilization

R
at

io
 o

f F
ea

si
bl

e 
T

as
k 

S
et

s

 

 

α = 0 (FPS)

α = 1 (NPS)

α = 0.2

α = 0.4

α = 0.6

α = 0.8

(b) Preemption cost:γ = 6

Fig. 7. Ratio of feasible task sets under different preempti on cost.
Preemption Position Number of Preemptions Schedulability Level

FPS any position maximum medium
NPS - zero low
PTS any position medium high

f-NPR any except firstQi low high
FPP pre-defined low high

TABLE I. Comparison of different scheduling policies
In a second simulation, we evaluated how the schedu-

lability of the task sets changes as a function of the length
of non-preemptive regions, by monitoring the percentage
of feasible tasks sets at a given utilization levelU . The
schedulability is verified by simulation, since it is highly
intractable to simulate all possible arrival patterns, the
results are only indicative to illustrate how the system
schedulability is affected by each model. Under each
scheduling algorithm, a preemption cost (γ) was added to
the remaining execution time of the preempted task, after
each preemption. We considered two cases whenγ was
equal to 3 and 6, respectively. The context switch cost (σ)
was assumed to be accounted in the task WCET. In this
simulation, all NPRs were assumed to be floating in the
task code and a parameterα was used to control the length
of NPRs:∀i | 1 < i ≤ n : Qi = α ∗ Ci.

Let NU denote the number of feasible task sets under
utilization U , and Ntot = 1000 denote the total number
of task sets. Figure 7 illustrates howNU/Ntot varies as a
function ofU . Notice that FPS and NPS can be considered
as two special cases, withα = 1 andα = 0, respectively.
In the figure they were represented by two solid lines. An
interesting result found in this experiment is that, under
high workloads, limited preemption method with properly
selected value ofα can improve the system schedulability
with respect to FPS. This became more evident when the
preemption cost increases.

Since at differentU level the feasible ratio may increase

or decrease withα, in the third simulation, the system
utilization U was varied from 0.05 to 0.95 with step 0.05
and the ratio of all feasible task sets was monitored, which
is defined as the sum, among all utilization levels, of the
total number of feasible task sets, divided by the number
of considered task set, that is:

∑U=0.95
U=0.05 NU

∑U=0.95
U=0.05 Ntot

Results were illustrated in Figure 8, which plots the
ratio of all feasible sets against different NPR lengths (as
value of α). The simulation considered different context
switch costs (γ): 2, 4 and 6. Whenα becomes larger,
all three algorithms performances become closer to NPS
method, as expected. The feasible ratios become lower
as γ increases, due to the negative impact of preemption
cost. Another interesting result is that limited preemptive
scheduling with some values ofα out-performs FPS in
terms of overall schedulability, and this phenomenon be-
comes more evident with higher preemption costs. Ac-
tually, the schedulability problem becomes a trade-off
between preemption cost and extra blocking. In the sim-
ulation, α was defined uniformly for all the tasks, hence,
the schedulability can be further improved if a differentα
value is properly selected for each task.



0 (FPS) 0.2 0.4 0.6 0.8 1 (NPS)
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Value of α

R
at

io
 o

f A
ll 

F
ea

si
bl

e 
T

as
k 

S
et

s

 

 

γ = 2
γ = 4
γ = 6

Fig. 8. Ratio of all feasible task sets with
different preemption cost.

V. Conclusions

The results presented in this paper can be summarized
in Table I, which compares the possible positions where
preemption can occur, the number of preemptions, and the
impact on schedulability. As showed in the table, under
NPS the number of preemptions is zero, but the schedu-
lability penalty is quite high due to the large blocking
delays. PTS can reduce the overall number of preemptions
with low schedule overhead, however, it cannot give a
good bound on the number of preemptions for each task.
f-NPR has good results on the number of preemptions
and utilization level, however, it cannot provide enough
knowledge on the preemption position as all the former
policies. FPP is the most promising approach amongst all
listed algorithms regarding the preemptions related issues.

Even though FPP shows its superiority from the pre-
emption point of view, since there is a large space to
be exploited in the system design, e.g., power/memory
constraints, cache behavior, timing predictability and so
on, it is still premature to conclude which one is the most
promising method. How to apply the suitable method to
optimize the system will be a future research topic.

References

[1] S. Altmeyer and G. Gebhard. Wcet analysis for preemptive
scheduling. In8th Int. Workshop on Worst-Case Execution Time
Analysis, pages 105–112, Prague, Czech, July 2008.

[2] S. Baruah. The limited-preemption uniprocessor scheduling of
sporadic systems. InECRTS ’05: Proc. of Euromicro Conf. on
Real-Time Systems, pages 137–144, July 2005.

[3] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and
M. Caccamo. Preemption points placement for sporadic task sets.
In ECRTS ’10: Proc. of Euromicro Conf. on Real-Time Systems,
July 2010.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests.Real-Time Systems, 30(1-2):129–154, 2005.

[5] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption.Real-Time Systems, 42(1-3):63–119, 2009.

[6] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache
partitioning on multi-tasking real time embedded systems.In Proc.
of the Int. Conf. on Embedded and Real-Time Computing Systems
and Applications, pages 101–110, 2008.

[7] A. Burns. Preemptive priority based scheduling: An appropriate
engineering approach. S. Son, editor, Advances in Real-Time
Systems, pages 225–248, 1994.

[8] A. Burns and A. Wellings.Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX (Fourth
Edition). Addison Wesley Longmain, 2009.

[9] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemptively
scheduling with high context switch cost. InProc. of 7th Euromicro
Workshop on Real-Time Systems, pages 184–190, 1995.

[10] G. Gebhard and S. Altmeyer. Optimal task placement to improve
cache performance. InProc. of the ACM-IEEE Int. Conf. on
Embedded Software, pages 259–268, Salzburg, Austria, 2007.

[11] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A
compiler framework for analyzing and tuning memory behavior.
ACM Trans. on Programming Languages and Systems, 21(4):703–
746, 1998.

[12] K. Jeffay. Scheduling sporadic tasks with shared resources in
hard-real-time systems. InRTSS ’92: Proc.s of Real-Time Systems
Symposium, pages 89–99, Dec 1992.

[13] J.V.Busquets-Matraix and et al. Adding instruction cache effect
to an exact schedulability analysis of preemptive real-time sys-
tem. In Proc. of Euromicro Workshop on Real-Time Systems
(EUROMICRO-RTS’96), pages 204 – 212, 1996.

[14] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C.Y.
Park, M. Lee, and C. S. Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling.IEEE Trans. on
Computers, 47(6):700–713, 1998.

[15] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. In Proc. of Workshop on Experimental Computer Science,
San Diego, California, 2007.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.Journal ACM, 20(1):46–
61, 1973.

[17] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible
preemption points. InRTSS ’06. Proc. of 27th Real-Time Systems
Symposium, pages 212–222, Dec. 2006.

[18] H. Ramaprasad and F. Mueller. Bounding worst-case response
time for tasks with non-preemptive regions. InRTAS ’08: Proc. of
Real-Time and Embedded Technology and Applications Symposium,
pages 58–67, April 2008.

[19] J. Staschulat, S. Schliecker, and R. Ernst. Schedulinganalysis of
real-time systems with precise modeling of cache related preemp-
tion delay. In Proc. of Euromicro Conf. on Real-Time Systems,
pages 41–48, 2005.

[20] Y. Wang and M. Saksena. Scheduling fixed-priority taskswith
preemption threshold. InProc. of Conf. on Embedded and Real-
Time Computing Systems and Applications, pages 328–335, 1999.

[21] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum
length of non-preemptive regions under fixed priority scheduling.
In Proc. of Conf. on Embedded and Real-Time Computing Systems
and Applications, pages 351–360, China, 2009.

[22] G. Yao, G. Buttazzo, and M. Bertogna. Feasibility analysis under
fixed priority scheduling with fixed preemption points. InProc.
of Conf. on Embedded and Real-Time Computing Systems and
Applications, Macau, China, Aug. 2010.

[23] P. M. Yomsi and Y. Sorel. Extending rate monotonic analysis with
exact cost of preemptions for hard real-time systems. InProc. of
19th EuroMicro Conf. on Real-Time Systems, pages 280–290, 2007.


